1
|
Boddepalli R, Gurugubelli TR, S V N P, Netheti VSB, Yusub S, Tamtam MR, Koutavarapu R, Pidaparthy LS. Efficiency and mechanistic insights of photocatalytic decomposition of tetracycline and rhodamine B utilizing Z-scheme g-C 3N 4/SnWO 4 heterostructures under visible light irradiation. ENVIRONMENTAL RESEARCH 2024; 254:119163. [PMID: 38759770 DOI: 10.1016/j.envres.2024.119163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
The hydrothermal approach was used in the design and construction of the SnWO4 (SW) nanoplates anchored g-C3N4 (gCN) nanosheet heterostructures. Morphology, optical characteristics, and phase identification were investigated. The heterostructure architect construction and successful interface interaction were validated by the physicochemical characteristics. The test materials were used as a photocatalyst in the presence of visible light to break down the antibiotic tetracycline (TC) and the organic Rhodamine B (RhB). The best photocatalytic degradation efficiency of TC (97%) and RhB (98%) pollutants was demonstrated by the optimized 15 mg of gCNSW-7.5 in 72 and 48 min, respectively, at higher rate constants of 0.0409 and 0.0772 min-1. The interface contact between gCN and SW, which successfully enhanced charge transfer and restricted recombination rate in the photocatalyst, is responsible for the enhanced performance of the gCNSW heterostructure photocatalyst. In addition, the gCNSW heterostructure photocatalyst demonstrated exceptional stability and reusability over the course of four successive testing cycles, highlighting its durable and dependable function. Superoxide radicals and holes were shown to be key players in the degradation of contaminants through scavenger studies. The charge transfer mechanism in the heterostructure is identified as Z-scheme mode with the help of UV-vis DRS analysis. Attributed to its unique structural features, and effective separation of charge carriers, the Z-scheme gCNSW-7.5 heterostructure photocatalyst exhibits significant promise as an exceptionally efficient catalyst for the degradation of pollutants. This positions it as a prospective material with considerable potential across various environmental applications.
Collapse
Affiliation(s)
- Ramu Boddepalli
- Department of Physics, Andhra University, Visakhapatnam, 530 003, Andhra Pradesh, India
| | | | - Pammi S V N
- Department of Physics, School of Sciences, SR University, Warangal, 506 371, Telangana, India
| | - V S Bhagavan Netheti
- Department of Physics, Dr. VS Krishna Govt. Degree College (Autonomous), Visakhapatnam, 530 013, Andhra Pradesh, India
| | - S Yusub
- Freshman Engineering Department, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, 521 230, Andhra Pradesh, India
| | - Mohan Rao Tamtam
- Data Science Lab, Department of Information and Communication Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Ravindranadh Koutavarapu
- Physics Division, Department of Basic Sciences and Humanities, GMR Institute of Technology, Rajam, 532 127, Andhra Pradesh, India.
| | - Lalitha Saranya Pidaparthy
- Department of Physics, Andhra University, Visakhapatnam, 530 003, Andhra Pradesh, India; Department of Physics, Visakha Govt. Degree College (W), Visakhapatnam, 530 020, Andhra Pradesh, India.
| |
Collapse
|
2
|
Zhao D, Lu H, Cheng Q, Huang Q, Ai J, Zhang Z, Liu H, He Z, Li Q. Research Progress on Inactivation of Bacteriophages by Visible-Light Photocatalytic Composite Materials: A Mini Review. MATERIALS (BASEL, SWITZERLAND) 2023; 17:44. [PMID: 38203898 PMCID: PMC10779577 DOI: 10.3390/ma17010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Infectious diseases caused by waterborne viruses have attracted researchers' great attention. To ensure a safe water environment, it is important to advance water treatment and disinfection technology. Photocatalytic technology offers an efficient and practical approach for achieving this goal. This paper reviews the latest studies on visible-light composite catalysts for bacteriophage inactivation, with a main focus on three distinct categories: modified UV materials, direct visible-light materials and carbon-based materials. This review gives an insight into the progress in photocatalytic material development and offers a promising solution for bacteriophage inactivation.
Collapse
Affiliation(s)
- Deqiang Zhao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; (J.A.); (Z.Z.)
| | - Heng Lu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| | - Qingkong Cheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
- Joint Graduate Training Base for Resources and Environment between Chongqing Jiaotong University and Chongqing Gangli Environmental Protection Co., Ltd., Chongqing Jiaotong University, Chongqing 400074, China
| | - Qi Huang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| | - Jing Ai
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; (J.A.); (Z.Z.)
| | - Zhibo Zhang
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; (J.A.); (Z.Z.)
| | - Hainan Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| | - Zongfei He
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Qiuhong Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; (H.L.); (Q.H.); (H.L.); (Q.L.)
- National Engineering Research Center for Inland Waterway Regulation, Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 400074, China
| |
Collapse
|
3
|
Wang X, Zhou X, Jin R, Tan T, Ma H, Fang R, Deng B, Dong F. Defect-poor BaSn(OH) 6 enhanced charge separation for efficient photocatalytic degradation of toluene. J Environ Sci (China) 2023; 134:86-95. [PMID: 37673536 DOI: 10.1016/j.jes.2022.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2023]
Abstract
Crystal defect is well-known to have a significant effect on the photocatalytic performance of semiconductors. Herein, defect-rich and -poor BaSn(OH)6 (BSOH-Sn and BSOH-Ba) photocatalysts were synthesized by exchanging the addition order of Ba and Sn. Results show that the defect-poor BSOH-Ba exhibited more efficient toluene degradation under ultraviolet (UV) light, which could attribute to the great suppression of photogenerated electron-hole (e--h+) pairs recombination by tuning the defect concentration. The low defect concentration in BSOH-Ba finally promotes the charge separation efficiency, the generation of reactive oxygen species (ROS), and the photocatalytic toluene degradation reactions. This work not only provides an effective way to inhibit the recombination of photogenerated carriers and improve the photocatalytic performance, but also promotes the understanding of defective perovskite-type hydroxide for more photoreactions.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xi Zhou
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ruiben Jin
- Hangzhou Tianliang Detection Technology COM., LTD., Hangzhou 311202, China
| | - Tianqi Tan
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Hao Ma
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ruimei Fang
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Bangwei Deng
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Fan Dong
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| |
Collapse
|
4
|
Nabeel MI, Hussain D, Ahmad N, Najam-Ul-Haq M, Musharraf SG. Recent advancements in the fabrication and photocatalytic applications of graphitic carbon nitride-tungsten oxide nanocomposites. NANOSCALE ADVANCES 2023; 5:5214-5255. [PMID: 37767045 PMCID: PMC10521255 DOI: 10.1039/d3na00159h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
The present review focuses on the widely used graphitic carbon nitride (g-C3N4)-tungsten oxide (WO3) nanocomposite in photocatalytic applications. These catalysts are widely employed due to their easy preparation, high physicochemical stability, nontoxicity, electron-rich properties, electronic band structure, chemical stability, low cost, earth-abundance, high surface area, and strong absorption capacity in the visible range. These sustainable properties make them predominantly attractive and unique from other photocatalysts. In addition, graphitic carbon nitride (g-C3N4) is synthesized from nitrogen-rich precursors; therefore, it is stable in strong acid solutions and has good thermal stability up to 600 °C. This review covers the historical background, crystalline phases, density-functional theory (DFT) study, synthesis method, 0-D, 1-D, 2-D, and 3-D materials, oxides/transition/nontransition metal-doped, characterization, and photocatalytic applications of WO3/g-C3N4. Enhancing the catalytic performance strategies such as composite formation, element-doping, heterojunction construction, and nanostructure design are also summarized. Finally, the future perspectives and challenges for WO3/g-C3N4 composite materials are discussed to motivate young researchers and scientists interested in developing environment-friendly and efficient catalysts.
Collapse
Affiliation(s)
- Muhammad Ikram Nabeel
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Naseer Ahmad
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | | | - Syed Ghulam Musharraf
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| |
Collapse
|
5
|
Kumar N, Kumari M, Ismael M, Tahir M, Sharma RK, Kumari K, Koduru JR, Singh P. Graphitic carbon nitride (g-C 3N 4)-assisted materials for the detection and remediation of hazardous gases and VOCs. ENVIRONMENTAL RESEARCH 2023; 231:116149. [PMID: 37209982 DOI: 10.1016/j.envres.2023.116149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/22/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Graphitic carbon nitride (g-C3N4)-based materials are attracting attention for their unique properties, such as low-cost, chemical stability, facile synthesis, adjustable electronic structure, and optical properties. These facilitate the use of g-C3N4 to design better photocatalytic and sensing materials. Environmental pollution by hazardous gases and volatile organic compounds (VOCs) can be monitored and controlled using eco-friendly g-C3N4- photocatalysts. Firstly, this review introduces the structure, optical and electronic properties of C3N4 and C3N4 assisted materials, followed by various synthesis strategies. In continuation, binary and ternary nanocomposites of C3N4 with metal oxides, sulfides, noble metals, and graphene are elaborated. g-C3N4/metal oxide composites exhibited better charge separation that leads to enhancement in photocatalytic properties. g-C3N4/noble metal composites possess higher photocatalytic activities due to the surface plasmon effects of metals. Ternary composites by the presence of dual heterojunctions improve properties of g-C3N4 for enhanced photocatalytic application. In the later part, we have summarised the application of g-C3N4 and its assisted materials for sensing toxic gases and VOCs and decontaminating NOx and VOCs by photocatalysis. Composites of g-C3N4 with metal and metal oxide give comparatively better results. This review is expected to bring a new sketch for developing g-C3N4-based photocatalysts and sensors with practical applications.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Monika Kumari
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Mohammed Ismael
- Electrical energy storage system, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
| | | | - Kavitha Kumari
- Baba Mastnath University, Asthal Bohar, Rohtak, 124001, India
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
6
|
Lei L, Fan H, Jia Y, Wu X, Hu N, Zhong Q, Wang W. Surface-assisted synthesis of biomass carbon-decorated polymer carbon nitride for efficient visible light photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 634:1014-1023. [PMID: 36577254 DOI: 10.1016/j.jcis.2022.12.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Template is frequently studied as a structure-directing agent to tune the nanomorphology of photocatalysts. However, the influences of template on the polymerization of precursors and compositions of the resulting samples are rarely considered. Herein, a biomass carbon-modified graphitic carbon nitride (CCNx) with a thin-layer morphology is synthesized via one-pot surface-assisted polymerization of melamine precursor on organic yeast. The formation of the hydrogen bond between melamine and yeast induces a strong interfacial confinement, giving rise to small-sized CCNx. In addition, the carbon materials derived from yeast dramatically broaden n → π* visible light harvesting, improve electron delocalization, and greatly enhance charge carrier separation. The optimized CCNx presents a much higher photocatalytic hydrogen production rate of 2704 μmol g-1h-1 under visible light irradiation (λ ≥ 420 nm), which is nearly 11-fold that of its pristine counterpart. This work realizes the synergistic effect between morphology tunning and composition tailoring by using biomass template, which shows a great potential in developing efficient metal-free photocatalysts.
Collapse
Affiliation(s)
- Lin Lei
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huiqing Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yuxin Jia
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaobo Wu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Neng Hu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Weijia Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
7
|
Linh NXD, Hanh NT, Cuong LM, Huong NT, Ha NTT, Trinh TD, Van Noi N, Cam NTD, Pham TD. Facile Fabrication of α-Fe2O3/g-C3N4 Z Scheme Heterojunction for Novel Degradation of Residual Tetracycline. Top Catal 2022. [DOI: 10.1007/s11244-022-01751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Electro-Oxidation of Metal Oxide-Fabricated Graphitic Carbon Nitride for Hydrogen Production via Water Splitting. COATINGS 2022. [DOI: 10.3390/coatings12050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogen is a great sourcez of energy due to having zero emission of carbon-based contents. It is found primarily in water, which is abundant and renewable. For electrochemical splitting of water molecules, it is necessary to use catalytic materials that minimize energy consumption. As a famous carbon material, graphitic carbon nitride, with its excellent physicochemical properties and diversified functionalities, presents great potential in electrocatalytic sensing. In the present work, graphitic carbon nitride-fabricated metal tungstate nanocomposites are synthesized by the hydrothermal method to study their applications in catalysis, electrochemical sensing, and water splitting for hydrogen production. Nanocomposites using different metals, such as cobalt, manganese, strontium, tin, and nickel, were used as a precursor are synthesized via the hydrothermal process. The synthesized materials (g-C3N4/NiWO4, g-C3N4/MnWO4, g-C3N4/CoWO4, g-C3N4/SnWO4, g-C3N4/SrWO4) were characterized using different techniques, such as FTIR and XRD. The presence of a functional groups between the metal and tungstate groups was confirmed by the FTIR spectra. All the nanocomposites show a tungstate peak at 600 cm−1, while the vibrational absorption bands for metals appear in the range of 400–600 cm−1. X-ray diffraction (XRD) shows that the characteristic peaks matched with the JCPDS in the literature, which confirmed the successful formation of all nanocomposites. The electrochemical active surface area is calculated by taking cyclic voltammograms of the potassium–ferrocyanide redox couple. Among the entire series of metal tungstate, the g-C3N4/NiWO4 has a large surface area owing to the high conductive properties towards water oxidation. In order to study the electrocatalytic activity of the as-synthesized materials, electrochemical water splitting is performed by cyclic voltammetry in alkaline medium. All the synthesized materials proved to be efficient catalysts with enhanced conductive properties towards water oxidation. Among the entire series, g-C3N4-NiWO4 is a very efficient electrocatalyst owing to its higher active surface area and conductive activity. The order of electrocatalytic sensing of the different composites is: g-C3N4-NiWO4 > g-C3N4-SrWO4 > g-C3N4-CoWO4 > g-C3N4-SnWO4 > g-C3N4-MnWO4. Studies on electrochemically synthesized electrocatalysts revealed their catalytic activity, indicating their potential as electrode materials for direct hydrogen evolution for power generation.
Collapse
|
9
|
Thanh Tung MH, Cuong LM, Thu Phuong TT, Van Hoang C, Thu Hien TT, Bich Huong NT, Ha Thanh PT, Van Quan P, Thu Phuong NT, Pham TD, Dieu Cam NT. Construction of Ag decorated on InVO4/g-C3N4 for novel photocatalytic degradation of residual antibiotics. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Zhou M, Ou H, Li S, Qin X, Fang Y, Lee S, Wang X, Ho W. Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102376. [PMID: 34693667 PMCID: PMC8693081 DOI: 10.1002/advs.202102376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Indexed: 05/19/2023]
Abstract
The techniques for the production of the environment have received attention because of the increasing air pollution, which results in a negative impact on the living environment of mankind. Over the decades, burgeoning interest in polymeric carbon nitride (PCN) based photocatalysts for heterogeneous catalysis of air pollutants has been witnessed, which is improved by harvesting visible light, layered/defective structures, functional groups, suitable/adjustable band positions, and existing Lewis basic sites. PCN-based photocatalytic air purification can reduce the negative impacts of the emission of air pollutants and convert the undesirable and harmful materials into value-added or nontoxic, or low-toxic chemicals. However, based on previous reports, the systematic summary and analysis of PCN-based photocatalysts in the catalytic elimination of air pollutants have not been reported. The research progress of functional PCN-based composite materials as photocatalysts for the removal of air pollutants is reviewed here. The working mechanisms of each enhancement modification are elucidated and discussed on structures (nanostructure, molecular structue, and composite) regarding their effects on light-absorption/utilization, reactant adsorption, intermediate/product desorption, charge kinetics, and reactive oxygen species production. Perspectives related to further challenges and directions as well as design strategies of PCN-based photocatalysts in the heterogeneous catalysis of air pollutants are also provided.
Collapse
Affiliation(s)
- Min Zhou
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| | - Honghui Ou
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Shanrong Li
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Xing Qin
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Shun‐cheng Lee
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHong KongP. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350116P. R. China
| | - Wingkei Ho
- Department of Science and Environmental StudiesThe Education University of Hong KongTai Po, New TerritoriesHong KongP. R. China
| |
Collapse
|
11
|
Alam U, Verma N. Direct Z-scheme-based novel cobalt nickel tungstate/graphitic carbon nitride composite: Enhanced photocatalytic degradation of organic pollutants and oxidation of benzyl alcohol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Kuchmiy SY. Photocatalytic Air Decontamination from Volatile Organic Pollutants Using Graphite-Like Carbon Nitride: a Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Wang Z, Gu Z, Wang F, Hermawan A, Hirata S, Asakura Y, Hasegawa T, Zhu J, Inada M, Yin S. An ultra-sensitive room temperature toluene sensor based on molten-salts modified carbon nitride. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Hendi AH, Osman AM, Khan I, Saleh TA, Kandiel TA, Qahtan TF, Hossain MK. Visible Light-Driven Photoelectrocatalytic Water Splitting Using Z-Scheme Ag-Decorated MoS 2/RGO/NiWO 4 Heterostructure. ACS OMEGA 2020; 5:31644-31656. [PMID: 33344816 PMCID: PMC7745211 DOI: 10.1021/acsomega.0c03985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/13/2020] [Indexed: 05/23/2023]
Abstract
Herein, we have successfully constructed a solid-state Z-scheme photosystem with enhanced light absorption capacity by combining the optoelectrical properties of AgNPs with those of the MoS2/RGO/NiWO4 (Ag-MRGON) heterostructure. The Ag-MRGON Z-scheme system demonstrates improved photo-electrochemical (PEC) water-splitting performance in terms of applied bias photon-to-current conversion efficiency (ABPE), which is 0.52%, and 17.3- and 4.3-times better than those of pristine MoS2 and MoS2/NiWO4 photoanodes, respectively. The application of AgNPs as an optical property enhancer and RGO as an electron mediator improved the photocurrent density of Ag-MRGON to 3.5 mA/cm2 and suppressed the charge recombination to attain the photostability of ∼2 h. Moreover, the photocurrent onset potential of the Ag-MRGON heterojunction (i.e., 0.61 VRHE) is cathodically shifted compared to those of NiWO4 (0.83 VRHE), MoS2 (0.80 VRHE), and MoS2/NiWO4 heterojunction (0.73 VRHE). The improved PEC water-splitting performance in terms of ABPE, photocurrent density, and onset potential is attributed to the facilitated charge transfer through the RGO mediator, the plasmonic effect of AgNPs, and the proper energy band alignments with the thermodynamic potentials of hydrogen and oxygen evolution.
Collapse
Affiliation(s)
- Abdulmajeed H. Hendi
- Physics
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Abdalghaffar M. Osman
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Ibrahim Khan
- Center
for Integrative Petroleum Research (CIPR), College of Petroleum Engineering
& Geoscience (CPG), King Fahd University
of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Tawfik A. Saleh
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Tarek A. Kandiel
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Talal F. Qahtan
- Department
of Mechanical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohammad K. Hossain
- Center
of Research Excellence in Renewable Energy Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
15
|
Ye C, Wang R, Wang H, Jiang F. The high photocatalytic efficiency and stability of LaNiO 3/g-C 3N 4 heterojunction nanocomposites for photocatalytic water splitting to hydrogen. BMC Chem 2020; 14:65. [PMID: 33292406 PMCID: PMC7596961 DOI: 10.1186/s13065-020-00719-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022] Open
Abstract
A binary direct Z-scheme LaNiO3/g-C3N4 nanocomposite photocatalyst consisted with LaNiO3 nanoparticles and g-C3N4 nanosheets was successfully synthesized by means of mechanical mixing and solvothermal methods in order to improve the photocatalytic water splitting activity. The as-prepared materials were characterized by powder X-ray diffraction (XRD), Scanning Electron microscope (SEM), Transmission Electron microscope (TEM), X-ray photoelectron spectroscope (XPS), Fourier Transform Infrared Spectroscopy (FT-IR) and N2 adsorption–desorption experiments, respectively, demonstrating the formation of interfacial interaction and heterogeneous structure in LaNiO3/g-C3N4 nanocomposites. Under UV-light irradiation, the LaNiO3/g-C3N4 samples which without the addition of any noble metal as co-catalyst behaved enhanced photocatalytic water splitting activity compared with pure LaNiO3 and g-C3N4, owing to the Z-scheme charge carrier transfer pathway. Especially, the LaNiO3/70%g-C3N4 nanocomposite reach an optimal yield of up to 3392.50 µmol g−1 in 5 h and held a maximum H2 evolution rate of 678.5 µmol h−1 g−1 that was 5 times higher than that of pure LaNiO3. ![]()
Collapse
Affiliation(s)
- Changyu Ye
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Rui Wang
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Haoyu Wang
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Fubin Jiang
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
16
|
Feng H, Xi Y, Huang Q. A novel p-n Mn 0.2Cd 0.8S/NiWO 4 heterojunction for highly efficient photocatalytic H 2 production. Dalton Trans 2020; 49:12242-12248. [PMID: 32821890 DOI: 10.1039/d0dt02265a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Constructing a p-n heterojunction has been regarded as an effective way to restrain charge recombination and boost photocatalytic H2 production activity. Herein, a novel Mn0.2Cd0.8S/NiWO4 composite was fabricated by a hydrothermal process and which exhibited enhanced H2 production activity and excellent photostability. Particularly, the composite with 30 wt% of NiWO4 achieved the optimal H2 production rate of 17.76 mmol g-1 h-1, which was 2.9 times higher than that of Mn0.2Cd0.8S. The increased H2 production property was mainly due to the p-n heterojunction between Mn0.2Cd0.8S and NiWO4, which provided an efficient path for charge transfer and inhibited the photocorrosion of Mn0.2Cd0.8S. This work can offer technical support for the design and development of p-n heterojunctions that can be applied for photocatalytic H2 production.
Collapse
Affiliation(s)
- Haoqiang Feng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.
| | | | | |
Collapse
|
17
|
Development of g-C3N4/BiVO4 Binary Component Heterojunction as an Advanced Visible Light-Responded Photocatalyst for Polluted Antibiotics Degradation. Top Catal 2020. [DOI: 10.1007/s11244-020-01368-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Design of 2D–2D NiO/g-C3N4 heterojunction photocatalysts for degradation of an emerging pollutant. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04262-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Synthesis of N and S Co-doped TiO2 Nanotubes for Advanced Photocatalytic Degradation of Volatile Organic Compounds (VOCs) in Gas Phase. Top Catal 2020. [DOI: 10.1007/s11244-020-01347-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
α-Fe2O3/Ag/g-C3N4 Core-Discontinuous Shell Nanocomposite as an Indirect Z-Scheme Photocatalyst for Degradation of Ethylbenzene in the Air Under White LEDs Irradiation. Catal Letters 2020. [DOI: 10.1007/s10562-020-03236-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Tri NLM, Duc DS, Van Thuan D, Tahtamouni TA, Pham TD, Tran DT, Thi Phuong Le Chi N, Nguyen VN. Superior photocatalytic activity of Cu doped NiWO4 for efficient degradation of benzene in air even under visible radiation. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|