1
|
He Y, Yang X, Li Y, Liu L, Guo S, Shu C, Liu F, Liu Y, Tan Q, Wu G. Atomically Dispersed Fe–Co Dual Metal Sites as Bifunctional Oxygen Electrocatalysts for Rechargeable and Flexible Zn–Air Batteries. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04550] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuting He
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yunsong Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
- Yangtze River Delta Research Institute of NPU, Taicang, Jiangsu 215400, China
| | - Liting Liu
- Analytical and Testing Center, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Shengwu Guo
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Chengyong Shu
- Department of Chemical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Feng Liu
- Analytical and Testing Center, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Yongning Liu
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Qiang Tan
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
2
|
Abstract
Fuel cells are a promising alternative to non-renewable energy production industries such as petroleum and natural gas. The cathodic oxygen reduction reaction (ORR), which makes fuel cell technology possible, is sluggish under normal conditions. Thus, catalysts must be used to allow fuel cells to operate efficiently. Traditionally, platinum (Pt) catalysts are often utilized as they exhibit a highly efficient ORR with low overpotential values. However, Pt is an expensive and precious metal, posing economic problems for commercialization. Herein, advances in carbon-based catalysts are reviewed for their application in ORRs due to their abundance and low-cost syntheses. Various synthetic methods from different renewable sources are presented, and their catalytic properties are compared. Likewise, the effects of heteroatom and non-precious metal doping, surface area, and porosity on their performance are investigated. Carbon-based support materials are discussed in relation to their physical properties and the subsequent effect on Pt ORR performance. Lastly, advances in fuel cell electrolytes for various fuel cell types are presented. This review aims to provide valuable insight into current challenges in fuel cell performance and how they can be overcome using carbon-based materials and next generation electrolytes.
Collapse
|
3
|
Gu L, Chu Y, Du H, Zhang Y, Zhao J, Xie Y. Supramolecular Iron Complex Formed Between Nitrogen Riched Phenanthroline Derivative and Iron With Improved Oxygen Reduction Activity in Alkaline Electrolyte. Front Chem 2019; 7:622. [PMID: 31572713 PMCID: PMC6753333 DOI: 10.3389/fchem.2019.00622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
In this work, the synthesis and evaluation of a new type non-noble metal oxygen reduction reaction (ORR) catalyst is reported. The catalyst is a complex containing iron ions and multiple N active sites, which displayed excellent oxygen reduction activity in alkaline medium. 2-(2-(4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)pyridin-2-yl)pyridin-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (PIPhen) was synthesized and used as a ligand to form a rich nitrogen iron coordination complex (Fe-PIPhen), and the complex was then loaded onto the carbon powder to form the target catalyst of Fe-PIPhen/C. The physical characterization of the catalyst was conducted by using Scanning Electron Microscopy (SEM), nitrogen adsorption-desorption and X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller analysis etc. Electrochemical characterizations were realized by taking cyclic voltammetry (CV), linear sweep voltammetry (LSV) and rotating ring disk electrode (RRDE). The results show that Fe-PIPhen/C possesses the good performance; it exhibits a high electrocatalytic activity, which is mainly via a four electron ORR pathway, with a low hydrogen peroxide yield of 2.58%. And, the average electron transfer number of 3.93 was obtained in alkaline electrolyte. In summary, Fe-PIPhen/C will likely become a promising alternative to Pt catalyst in fuel cell.
Collapse
Affiliation(s)
- Lin Gu
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, China
| | - Ya Chu
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, China
| | - Hongmei Du
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, China
| | - Yan Zhang
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, China
| | - Jinsheng Zhao
- Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, China
| | - Yu Xie
- Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, China
| |
Collapse
|