Huang JB, Yin L, Yue TC, Wang LL, Wang DZ. Assembly of Functional Co(II) Metal-Organic Frameworks through a Mixed Ligand Strategy: Structure and Photocatalytic Degradation Properties.
Inorg Chem 2024;
63:6928-6937. [PMID:
38571457 DOI:
10.1021/acs.inorgchem.4c00372]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Four Co(II)-based metal-organic frameworks (MOFs) were constructed by a mixed ligand strategy under solvothermal conditions. The controllable modification of the bridging groups in the secondary building units was realized by changing the anions in MOFs 1-3. The MOF 4 with 3D framework structure was obtained by regulating the solvent ratio following the synthesis process of MOF 3. Furthermore, the MOFs 1-4 exhibited efficient photocatalytic activity for the degradation of malachite green (MG) dye without any photosensitizer or cocatalyst under a low-energy light source, the decolorization ratio of MG all reached more than 96.0% within 60 min, and maximal degradation was obtained to be 99.4% (MOF 4). The recycling experiments showed that the degradation rate of MG was still higher than 91% after 10 cycles. In the MOF 4 as representation, the photocatalytic process was explored systematically. The possible mechanism of catalytic degradation was discussed, which proved the existence of efficient oxidation active factors (•O2-, •OH, and h+). The possible intermediates and degradation pathways were investigated based on high-performance liquid chromatography tandem mass spectrometry. Additionally, MOFs 1-4 also exhibited excellent photocatalytic activity for the degradation of methylene blue, methyl violet, rhodamine B, and basic red 9.
Collapse