1
|
Namba M, Takatsu H, Mikita R, Sijia Y, Murayama K, Li HB, Terada R, Tassel C, Ubukata H, Ochi M, Saez-Puche R, Latasa EP, Ishimatsu N, Shiga D, Kumigashira H, Kinjo K, Kitagawa S, Ishida K, Terashima T, Fujita K, Mashiko T, Yanagisawa K, Kimoto K, Kageyama H. Large Perpendicular Magnetic Anisotropy Induced by an Intersite Charge Transfer in Strained EuVO 2H Films. J Am Chem Soc 2023; 145:21807-21816. [PMID: 37770040 DOI: 10.1021/jacs.3c04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Perovskite oxides ABO3 continue to be a major focus in materials science. Of particular interest is the interplay between A and B cations as exemplified by intersite charge transfer (ICT), which causes novel phenomena including negative thermal expansion and metal-insulator transition. However, the ICT properties were achieved and optimized by cationic substitution or ordering. Here we demonstrate an anionic approach to induce ICT using an oxyhydride perovskite, EuVO2H, which has alternating layers of EuH and VO2. A bulk EuVO2H behaves as a ferromagnetic insulator with a relatively high transition temperature (TC) of 10 K. However, the application of external pressure to the EuIIVIIIO2H bulk or compressive strain from the substrate in the thin films induces ICT from the EuIIH layer to the VIIIO2 layer due to the extended empty V dxy orbital. The ICT phenomenon causes the VO2 layer to become conductive, leading to an increase in TC that is dependent on the number of carriers in the dxy orbitals (up to a factor of 4 for 10 nm thin films). In addition, a large perpendicular magnetic anisotropy appears with the ICT for the films of <100 nm, which is unprecedented in materials with orbital-free Eu2+, opening new perspectives for applications. The present results provide opportunities for the acquisition of novel functions by alternating transition metal/rare earth layers with heteroanions.
Collapse
Affiliation(s)
- Morito Namba
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Takatsu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Riho Mikita
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yao Sijia
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kantaro Murayama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hao-Bo Li
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Ryo Terada
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Cédric Tassel
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroki Ubukata
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Masayuki Ochi
- Department of Physics, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Regino Saez-Puche
- Departamento Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Elias Palacios Latasa
- INMA, CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
- Departamento de Ciencia y Tecnología de Materiales y Fluidos, Universidad de Zaragoza, 50018, Zaragoza, Spain
| | - Naoki Ishimatsu
- Department of Physical Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Daisuke Shiga
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| | | | - Katsuki Kinjo
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shunsaku Kitagawa
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kenji Ishida
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takahito Terashima
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Koji Fujita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takeaki Mashiko
- National Institute for Materials Science, Ibaraki 305-0044, Japan
| | | | - Koji Kimoto
- National Institute for Materials Science, Ibaraki 305-0044, Japan
| | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|