1
|
Liang B, Zhu P, Gu J, Yuan W, Xiao B, Hu H, Rao M. Advancing Adsorption and Separation with Modified SBA-15: A Comprehensive Review and Future Perspectives. Molecules 2024; 29:3543. [PMID: 39124948 PMCID: PMC11314527 DOI: 10.3390/molecules29153543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Mesoporous silica SBA-15 has emerged as a promising adsorbent and separation material due to its unique structural and physicochemical properties. To further enhance its performance, various surface modification strategies, including metal oxide and noble metal incorporation for improved catalytic activity and stability, organic functionalization with amino and thiol groups for enhanced adsorption capacity and selectivity, and inorganic-organic composite modification for synergistic effects, have been extensively explored. This review provides a comprehensive overview of the recent advances in the surface modification of SBA-15 for adsorption and separation applications. The synthesis methods, structural properties, and advantages of SBA-15 are discussed, followed by a detailed analysis of the different modification strategies and their structure-performance relationships. The adsorption and separation performance of functionalized SBA-15 materials in the removal of organic pollutants, heavy metal ions, gases, and biomolecules, as well as in chromatographic and solid-liquid separation, is critically evaluated. Despite the significant progress, challenges and opportunities for future research are identified, including the development of low-cost and sustainable synthesis routes, rational design of SBA-15-based materials with tailored properties, and integration into practical applications. This review aims to guide future research efforts in developing advanced SBA-15-based materials for sustainable environmental and industrial applications, with an emphasis on green and scalable modification strategies.
Collapse
Affiliation(s)
- Binjun Liang
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Pingxin Zhu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Jihan Gu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
- Chongyi Green Metallurgy New Energy Co., Ltd., Ganzhou 341300, China
| | - Weiquan Yuan
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Bin Xiao
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Haixiang Hu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (P.Z.); (J.G.); (W.Y.); (H.H.)
| | - Mingjun Rao
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
2
|
Weng G, Wang B, Ye Y, Zhang Q, Yan Y, Chen C, Ding CF. Application of Microscopic Highly Hydrophilic Silica-Based Nanocomposites with High Surface Exposure in the Efficient Identification of Intact N-Glycopeptides. Anal Chem 2023; 95:7735-7742. [PMID: 37146275 DOI: 10.1021/acs.analchem.3c00927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Glycosylation of proteins regulates the life activities of organisms, while abnormalities of glycosylation sites and glycan structures occur in various serious diseases such as cancer. A separation and enrichment procedure is necessary to realize the analysis of the glycoproteins/peptides by mass spectrometry, for which the surface hydrophilicity of the material is an important factor for the separation and enrichment performance. In the present work, under the premise of an obvious increase of the surface silicon exposure (79.6%), the amount of surface polar silanol is remarkably generated accompanying the introduction of the active amino groups on the surface of silica. The microscopic hydrophilicity, which is determined with water physical-adsorption measurements and can directly reflect the interaction of water molecules and the intrinsic surface of the material, maximally increases by 44%. This microscopically highly hydrophilic material shows excellent enrichment ability for glycopeptides, such as extremely low detection limits (0.01 fmol μL-1), remarkable selectivity (1:8000), and size exclusion effects (1:8000). A total of 677 quantifiable intact N-glycopeptides were identified from the serum of patients with cervical cancer, and the glycosylation site and glycan structure were analyzed in depth, indicating that this novel material can show a broad practical application in cervical cancer diagnosis.
Collapse
Affiliation(s)
- Guoying Weng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yicheng Ye
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Qiaohong Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chen Chen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
3
|
High zirconium loads in Zr-SBA-15 mesoporous materials prepared by direct-synthesis and pH-adjusting approaches. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Novel Magnetic Nanocomposites Based on Carboxyl-Functionalized SBA-15 Silica for Effective Dye Adsorption from Aqueous Solutions. NANOMATERIALS 2022; 12:nano12132247. [PMID: 35808082 PMCID: PMC9268668 DOI: 10.3390/nano12132247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023]
Abstract
In this study, three novel magnetic nanocomposites based on carboxyl-functionalized SBA-15 silica and magnetite nanoparticles were prepared through an effective and simple procedure and applied for methylene blue (MB) and malachite green G (MG) adsorption from single and binary solutions. Structure, composition, morphology, magnetic, and textural properties of the composites were thoroughly investigated. The influence of the amount of carboxyl functional groups on the physicochemical and adsorptive properties of the final materials was investigated. The capacity of the synthesized composites to adsorb MB and MG from single and binary solutions and the factors affecting the adsorption process, such as contact time, solution pH, and dye concentration, were assessed. Kinetic modelling showed that the dye adsorption mechanism followed the pseudo-second-order kinetic model, indicating that adsorption was a chemically controlled multilayer process. The adsorption rate was simultaneously controlled by external film diffusion and intraparticle diffusion. It was evidenced that the molecular geometry of the dye molecule plays a major role in the adsorption process, with the planar geometry of the MB molecule favoring adsorption. The analysis of equilibrium data revealed the best description of MB adsorption behavior by the Langmuir isotherm model, whereas the Freundlich model described better the MG adsorption.
Collapse
|
5
|
Han R, Wang F, Zhao C, Zhang M, Cui S, Yang J. Magnetic solid-phase extraction of pyrethroid and neonicotinoid insecticides separately in environmental water samples based on alkaline or acidic group-functionalized mesoporous silica. Analyst 2022; 147:1995-2007. [DOI: 10.1039/d2an00088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, amino- or carboxyl-functionalized magnetic KIT-6 have been synthesized separately. The two nanocomposites were successfully used to enrich pyrethroids and neonicotinoids insecticides from environmental water samples, respectively.
Collapse
Affiliation(s)
- Rui Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Fei Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Chuanfeng Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Meixing Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shihai Cui
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
6
|
Gök Y, Aykut İT, Gök HZ. Readily accessible mesoporous silica nanoparticles supported chiral urea‐amine bifunctional catalysts for enantioselective reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaşar Gök
- Department of Biomedical Engineering, Bucak Faculty of Technology Burdur Mehmet Akif Ersoy University Burdur Turkey
| | - İrem Tutkum Aykut
- Department of Biomedical Engineering, Bucak Faculty of Technology Burdur Mehmet Akif Ersoy University Burdur Turkey
| | - Halil Zeki Gök
- Department of Biomedical Engineering, Bucak Faculty of Technology Burdur Mehmet Akif Ersoy University Burdur Turkey
| |
Collapse
|