1
|
Galhano J, Kurutos A, Dobrikov GM, Duarte MP, Santos HM, Capelo-Martínez JL, Lodeiro C, Oliveira E. Fluorescent polymers for environmental monitoring: Targeting pathogens and metal contaminants with naphthalimide derivatives. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136107. [PMID: 39405715 DOI: 10.1016/j.jhazmat.2024.136107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
Monitoring Hg2+ levels in aqueous environments is crucial to assess the potential methylmercury contamination via bacterial conversion, however, existing methods often require extensive sample treatment and expensive equipment. To mitigate this issue, this study examines the synthesis and application of three naphthalimide-based compounds, with significant fluorescent and solvatochromic behavior (C1, C2, and C3). Compounds C1 and C2 demonstrated a strong affinity for Hg2+ metal ions, with C2 showing selectivity and a strong antibacterial profile, particularly against S. aureus (MIC50 (C2) = 0.01 µg/mL). Moreover, these compounds were incorporated into three polymeric matrices, namely polyvinyl chloride (PVC), poly (methyl methacrylate-co-methacrylic acid) (PMMMA), and Starch, allowing for the development of solid-support sensors/surfaces with a strong antibacterial profile, highlighting the inherent dual-functionality of the compounds. Interestingly, the C2-doped Starch biopolymer detected low concentrations of Hg2+ ions, such as 23 nM in tap water (value within the WHO standards for drinking water), through a rapid spectroscopic evaluation without sample treatment. This biopolymer was generated via a sustainable, green-chemistry-oriented, temperature-dependent water/Starch synthetic route, without the addition of plasticizers and any associated ecotoxicity. The study used sustainable methods for environmental monitoring and antibacterial applications, advancing material science to offer effective, accessible, and eco-friendly solutions for detecting and mitigating mercury pollution and bacterial contaminations, enhancing environmental and health safety.
Collapse
Affiliation(s)
- Joana Galhano
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Atanas Kurutos
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria; University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski blvd, Sofia 1756, Bulgaria.
| | - Georgi M Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria
| | - Maria Paula Duarte
- MEtRICs / NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
| | - Hugo M Santos
- PROTEOMASS Scientific Society, Costa da Caparica 2825-466, Portugal
| | | | - Carlos Lodeiro
- PROTEOMASS Scientific Society, Costa da Caparica 2825-466, Portugal.
| | | |
Collapse
|
2
|
Ma W, Zhang Q, Xiang D, Mao K, Xue J, Chen Z, Chen Z, Du W, Zhai K, Zhang H. Metal-Organic Framework (MOF)-Based Sensors for Mercury (Hg) Detection: Design Strategies and Recent Progress. Chemistry 2024:e202403760. [PMID: 39567351 DOI: 10.1002/chem.202403760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
Monitoring mercury (Hg) is critical for environmental and public health. Metal-organic framework (MOF)-based sensors demonstrate the advantage of high sensitivity and rapid response. We summarize the advances of MOF sensors for Hg2+ detection from the perspective of MOF type and role in the sensors. First, we introduce three MOFs used in Hg sensors-UIO, ZIF, and MIL-that have demonstrated superior performance. Then, we discuss the specifics of MOF-based sensors for Hg2+ detection in terms of the recognition and signal elements. Currently, the recognition elements include T-rich aptamers, noble metal nanoparticles, central metal ions, and organic functional groups inherent to MOFs. Sensors with fluorescence and colorimetric signals are the two main types of optical MOF sensors used for Hg detection. Electrochemical sensors have also been fabricated, but these are less frequently reported, potentially due to the limited conductivity and cycling stability of MOFs. Notably, dual-signal sensors mitigate background signals interference and enhance the accuracy of Hg2+ detection. Furthermore, to facilitate portability and user-friendliness, portable devices such as microfluidics, paper-based devices, and smartphones have been developed for Hg2+ detection, showcasing potential applications. We also address the challenges related to MOF-based sensors for Hg2+ and future outlook.
Collapse
Affiliation(s)
- Wei Ma
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Qidu Zhang
- College of Civil Engineeing, Tongji University, Shanghai, 200092, China
| | - Dongshan Xiang
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jiaqi Xue
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhen Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Kun Zhai
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
3
|
Liu X, Wang X, Jiang Y. Construction and Application of Multipurpose metal-organic frameworks -based Hydrogen Sulfide Probe. J Fluoresc 2023; 33:2193-2200. [PMID: 37000364 DOI: 10.1007/s10895-023-03225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
Hydrogen sulfide (H2S) is a toxic gas derived from the sulfur industry and trace H2S in the environment can cause serious ecological damage while inhalation can cause serious damage and lead to disease. Therefore, the real-time and accurate detection of trace sulfur ions is of great significance for environmental protection and early disease detection. Considering the shortcoming of current H2S probes in terms of stability and sensitivity, the development of novel probes is necessary. Herein, a novel metal-organic frameworks (MOF)-based material, UiO-66-NH2@BDC, was designed and prepared for the visual detection of H2S with rapid response (< 6 s) and low detection limit of S2- (0.13 µM) by hydrogen bonding. Based on its good optical performance, the UiO-66-NH2@BDC probe can detect S2- in various water environments. More importantly, UiO-66-NH2@BDC probe realize imaging S2- in cells and live zebrafish.
Collapse
Affiliation(s)
- Xinyi Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P R China
| | - Xiaosong Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P R China
| | - Yuliang Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P R China
| |
Collapse
|
4
|
Wang Y, Gao N, Hu J. Multi‐responsive Luminescent Probe with Bis‐imidazolyl Biphenyl and Aromatic Polycarboxylic Acids Ligands for Sensing Fe
3+
, Cr
2
O
7
2−
and CrO
4
2−
in Aqueous Solution. ChemistrySelect 2023. [DOI: 10.1002/slct.202204549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Yan Wang
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Ningning Gao
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Jiaqi Hu
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| |
Collapse
|
5
|
Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Zhao D, Yu K, Han X, He Y, Chen B. Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing, and information encryption. Chem Commun (Camb) 2022; 58:747-770. [PMID: 34979539 DOI: 10.1039/d1cc06261a] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-organic frameworks (MOFs), as an emerging class of porous materials, excel in designability, regulatability, and modifiability in terms of their composition, topology, pore size, and surface chemistry, thus affording a huge potential for addressing environment and energy-related challenges. In particular, MOFs can be applied as porous adsorbents for the purification of industrially important hydrocarbons through certain process-efficient separation schemes based on selectivity-reversed adsorption and multicomponent separation. Moreover, the vast combination possibilities and controllable and engineerable luminescent units of MOFs make them a versatile platform to develop functionally tailored materials for luminescent sensing and optical data encryption. In this feature article, we summarize the recent progress in the use of porous MOFs for the separation and purification of acetylene (C2H2) and ethylene (C2H4) based on selectivity-reversed adsorption and multicomponent separation strategies. Moreover, we highlight the advances over the past three years in the field of MOF-based luminescent materials for thermometry, turn-on sensing, and information encryption.
Collapse
Affiliation(s)
- Dian Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Kuangli Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Xue Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA.
| |
Collapse
|
7
|
Moumen E, Assen AH, Adil K, Belmabkhout Y. Versatility vs stability. Are the assets of metal–organic frameworks deployable in aqueous acidic and basic media? Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Abstract
Metal Organic Frameworks (MOFs) are noted as exceptional candidates towards the detection and removal of specific analytes. MOFs were reported in particular for the detection/removal of environmental contaminants, such as heavy metal ions, toxic anions, hazardous gases, explosives, etc. Among heavy metal ions, mercury has been noted as a global hazard because of its high toxicity in the elemental (Hg0), divalent cationic (Hg2+), and methyl mercury (CH3Hg+) forms. To secure the environment and living organisms, many countries have imposed stringent regulations to monitor mercury at all costs. Regarding the detection/removal requirements of mercury, researchers have proposed and reported all kinds of MOFs-based luminescent/non-luminescent probes towards mercury. This review provides valuable information about the MOFs which have been engaged in detection and removal of elemental mercury and Hg2+ ions. Moreover, the involved mechanisms or adsorption isotherms related to sensors or removal studies are clarified for the readers. Finally, advantages and limitations of MOFs in mercury detection/removal are described together with future scopes.
Collapse
|
9
|
Bhardwaj V, Nurchi VM, Sahoo SK. Mercury Toxicity and Detection Using Chromo-Fluorogenic Chemosensors. Pharmaceuticals (Basel) 2021; 14:123. [PMID: 33562543 PMCID: PMC7915024 DOI: 10.3390/ph14020123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Mercury (Hg), this non-essential heavy metal released from both industrial and natural sources entered into living bodies, and cause grievous detrimental effects to the human health and ecosystem. The monitoring of Hg2+ excessive accumulation can be beneficial to fight against the risk associated with mercury toxicity to living systems. Therefore, there is an emergent need of novel and facile analytical approaches for the monitoring of mercury levels in various environmental, industrial, and biological samples. The chromo-fluorogenic chemosensors possess the attractive analytical parameters of low-cost, enhanced detection ability with high sensitivity, simplicity, rapid on-site monitoring ability, etc. This review was narrated to summarize the mercuric ion selective chromo-fluorogenic chemosensors reported in the year 2020. The design of sensors, mechanisms, fluorophores used, analytical performance, etc. are summarized and discussed.
Collapse
Affiliation(s)
- Vinita Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, India;
| | - Valeria M. Nurchi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy
| | - Suban K. Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, India;
| |
Collapse
|
10
|
Alizadeh-Bavieh M, Nobakht V, Sedaghat T, Carlucci L, Mercandelli P, Taghavi M. Selective cationic dye sorption in water by a two-dimensional zinc-carboxylate coordination polymer and its melamine-formaldehyde foam composite. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Wang XQ, Tang J, Ma X, Wu D, Yang J. A novel copper( i) metal–organic framework as a highly efficient and ultrasensitive electrochemical platform for detection of Hg( ii) ions in aqueous solution. CrystEngComm 2021. [DOI: 10.1039/d1ce00197c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel copper(i) metal–organic framework was constructed and used to modify a glassy carbon electrode, and exhibits excellent electrochemical sensing of Hg(ii) ions.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Jing Tang
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Xuehui Ma
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Dan Wu
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Jie Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252000
- China
| |
Collapse
|
12
|
Chen Y, Liu S, Lin J, Liu S, Ruan Z. Synthesis, Crystal Structure and Luminescent Properties of a 3D Mg(II)−Sm(III) Heterometallic Coordination Polymer Containing 20‐member Water Clusters. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanmei Chen
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering Huanggang Normal University Huanggang 438000 China
| | - Shanshan Liu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering Huanggang Normal University Huanggang 438000 China
| | - Junqi Lin
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering Huanggang Normal University Huanggang 438000 China
| | - Siyu Liu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering Huanggang Normal University Huanggang 438000 China
| | - Zhijun Ruan
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering Huanggang Normal University Huanggang 438000 China
| |
Collapse
|
13
|
Zhong YQ, Ning TJ, Cheng L, Xiong W, Wei GB, Liao FS, Ma GQ, Hong N, Cui HF, Fan H. An electrochemical Hg 2+ sensor based on signal amplification strategy of target recycling. Talanta 2020; 223:121709. [PMID: 33303159 DOI: 10.1016/j.talanta.2020.121709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023]
Abstract
In this work, an unmodified homogeneous electrochemical sensor based on electrochemical bonding and catalytic hairpin assembly (CHA) was first constructed for the high sensitivity detection of Hg2+. Herein, tetraferrocene, a synthesized compound, was used as a signal marker that modified both ends of the hairpin probe to amplify the electrochemical signal. The interaction of T-Hg2+-T could induce the catalytic self-assembly of hairpins by means of auxiliary DNA. The rigid DNA triangle that was formed easily reaches the electrode and induced Au-S self-assembly assisted by potential, allowing tetraferrocene to reach the electrode surface and generate a sensitive electrochemical signal. CHA and tetraferrocene signal markers accomplished dual signal amplification, and the limit of detection was 0.12 pM. Differential pulse voltammetry experiments in the presence of tetraferrocene redox indicator show that the linear response range of electrochemical biosensors to mercury ions is 0.2-2000 pM, This technology offers good selectivity and high recognition efficiency for the detection of mercury ions and has broad application prospects in actual sample detection.
Collapse
Affiliation(s)
- You Quan Zhong
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Tian Jiao Ning
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Lin Cheng
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Wei Xiong
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Guo Bing Wei
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Fu Sheng Liao
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Guang Qiang Ma
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Nian Hong
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Han Feng Cui
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China.
| | - Hao Fan
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China.
| |
Collapse
|
14
|
Kanan SM, Malkawi A. Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1805319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofian M. Kanan
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Ahmed Malkawi
- Department of Chemistry, Northwest Missouri State University, Maryville, Missouri, USA
| |
Collapse
|
15
|
The role of Fe3+ ions in fluorescence detection of H2S by a bimetallic metal-organic framework. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
An acid-base resistant polyoxometalate-based metal–organic framework constructed from {Cu4Cl}7+ and {Cu2(CO2)4} clusters for photocatalytic degradation of organic dye. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Lin HY, Chi J, Liang S, Ji M, Liu G. Three Functionalized Zinc(II)/Cobalt(II) Coordination Complexes Demonstrating Fluorescent Sensing Activities towards Fe3+
Ions and Photocatalytic Selectivity for Organic Dyes. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hong-Yan Lin
- College of Chemistry and Chemical Engineering; Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell; Bohai University; 121013 Jinzhou P. R. China
| | - Jie Chi
- College of Chemistry and Chemical Engineering; Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell; Bohai University; 121013 Jinzhou P. R. China
| | - Suang Liang
- College of Chemistry and Chemical Engineering; Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell; Bohai University; 121013 Jinzhou P. R. China
| | - Ming Ji
- Liaoyang Food Inspection and Testing Center Liaoyang; 111000 Liaoning P. R. China
| | - Guocheng Liu
- College of Chemistry and Chemical Engineering; Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell; Bohai University; 121013 Jinzhou P. R. China
| |
Collapse
|