1
|
Xu Y, Lu L, Wang J, Zhong W, Chi X, Muddassir M, Sakiyama H, Singh A. Construction of a 1D Cu(I)-based coordination polymer as a luminescent sensor for antibiotics and a photocatalyst for dye degradation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
A Comprehensive Review on the Use of Metal–Organic Frameworks (MOFs) Coupled with Enzymes as Biosensors. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies have shown the development of electrochemical biosensors based on enzymes immobilized in metal–organic frameworks (MOFs). Although enzymes have unique properties, such as efficiency, selectivity, and environmental sustainability, when immobilized, these properties are improved, presenting significant potential for several biotechnological applications. Using MOFs as matrices for enzyme immobilization has been considered a promising strategy due to their many advantages compared to other supporting materials, such as larger surface areas, higher porosity rates, and better stability. Biosensors are analytical tools that use a bioactive element and a transducer for the detection/quantification of biochemical substances in the most varied applications and areas, in particular, food, agriculture, pharmaceutical, and medical. This review will present novel insights on the construction of biosensors with materials based on MOFs. Herein, we have been highlighted the use of MOF for biosensing for biomedical, food safety, and environmental monitoring areas. Additionally, different methods by which immobilizations are performed in MOFs and their main advantages and disadvantages are presented.
Collapse
|
3
|
Lei M, Ge F, Gao X, Shi Z, Zheng H. A Water-Stable Tb-MOF As a Rapid, Accurate, and Highly Sensitive Ratiometric Luminescent Sensor for the Discriminative Sensing of Antibiotics and D 2O in H 2O. Inorg Chem 2021; 60:10513-10521. [PMID: 34170146 DOI: 10.1021/acs.inorgchem.1c01145] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The design and development of self-calibrating ratiometric luminescent sensors for the fast, accurate, and sensitive discrimination and determination of pollutants in wastewater is highly desirable for public and environmental health. Herein, a 3D porous Tb(III)-based metal-organic framework (MOF), {[Tb(HL)(H2O)2]·x(solv)}n (1), was facilely synthesized using a urea-functionalized tetracarboxylate ligand, 5,5'-(((1,4-phenylenebis(azanediyl))bis(carbonyl))bis(azanediyl))diisophthalic acid (H4L). The activated framework showed a good water stability in both aqueous solutions at a wide pH range of 2-14 and simulated antibiotic wastewaters. Interestingly, this Tb-MOF exhibited dual luminescence owing to the partial energy transfer from the antenna H4L to Tb3+. More importantly, activated 1 (1a) that was dispersed in water showed a fast, accurate, and highly sensitive discrimination ability toward antibiotics with a good recyclability, discriminating three different classes of antibiotics from each other via the quenching or enhancement of the luminescence and tuning the emission intensity ratio between the H4L ligand and the Tb3+ center for the first time. Simultaneously, 1a is a ratiometric luminescent sensor for the rapid, accurate, and quantitative discrimination of D2O from H2O. Furthermore, this complex was successfully used for the effective determination of antibiotics and D2O in real water samples. This work indicates that 1a represents the first ever MOF material for the discriminative sensing of antibiotics and D2O in H2O and promotes the practical application of Ln-MOF-based ratiometric luminescent sensors in monitoring water quality and avoiding any major leak situation.
Collapse
Affiliation(s)
- Mingyuan Lei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Fayuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xiangjing Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhiqiang Shi
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an 271021, P. R. China
| | - Hegen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Whelan É, Steuber FW, Gunnlaugsson T, Schmitt W. Tuning photoactive metal–organic frameworks for luminescence and photocatalytic applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213757] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Yang GL, Jiang XL, Xu H, Zhao B. Applications of MOFs as Luminescent Sensors for Environmental Pollutants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005327. [PMID: 33634574 DOI: 10.1002/smll.202005327] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/16/2020] [Indexed: 06/12/2023]
Abstract
The environmental pollution has become a serious issue because the pollutants can cause permanent damage to the DNA, nervous system, and circulating system, resulting in various incurable diseases, such as organ failure, malformation, angiocardiopathy, and cancer. The effective detection of environmental pollutants is urgently needed to keep them far away from daily life. Among the reported pollutant sensors, luminescent metal-organic frameworks (LMOFs) with tunable structures have attracted remarkable attention to detect the pollutants because of their excellent selectivity, sensitivity, and recyclability. Although lots of metal-organic framework (MOF)-based luminescent sensors have been summarized and discussed in previous reviews, the detection of environmental pollutants, especially radioactive ions and heavy metal ions, still have not been systematically presented. Here, the sensing mechanisms and construction principles of luminescent MOFs are discussed, and the state-of-the-art MOF-based luminescent sensors of environmental pollutants, including pesticides, antibiotics, explosives, VOCs, toxic gas, toxic small molecules, radioactive ions, and heavy metal ions are highlighted. This comprehensive review may further guide the development of luminescent MOFs and promote their practical applications for sensing environmental pollutants.
Collapse
Affiliation(s)
- Guo-Li Yang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| | - Xiao-Lei Jiang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| | - Hang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Raja Lakshmi P, Nanjan P, Kannan S, Shanmugaraju S. Recent advances in luminescent metal–organic frameworks (LMOFs) based fluorescent sensors for antibiotics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213793] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Zhang S. Anion-directed two cadmium(II) metal–organic frameworks based on bis(imidazol-1-yl)methane with diverse supramolecular structures and luminescence properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Morozova S, Sharsheeva A, Morozov M, Vinogradov A, Hey-Hawkins E. Bioresponsive metal–organic frameworks: Rational design and function. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Liu D, Zhu Q, Wen G, Zhou W, Wang X, Liang X, Rong J, Shao J. Assembly of a Cd(II)-organic framework based on 1,3,5-Tri(1H-imidazol-1-yl)benzene: Synthesis, crystal structure, and luminescent sensing property. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Kanan SM, Malkawi A. Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1805319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofian M. Kanan
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Ahmed Malkawi
- Department of Chemistry, Northwest Missouri State University, Maryville, Missouri, USA
| |
Collapse
|
11
|
Yuan R, He H. State of the art methods and challenges of luminescent metal–organic frameworks for antibiotic detection. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00955e] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review focuses on recent developments in the design and synthesis of luminescence MOFs for monitoring antibiotics.
Collapse
Affiliation(s)
- Rongrong Yuan
- Department of Materials Science and Engineering
- Jilin Jianzhu University
- Changchun 130118
- P. R. China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|
12
|
Wang J, Chen NN, Qian J, Chen XR, Zhang XY, Fan L. Multi-responsive chemosensing and photocatalytic properties of three luminescent coordination polymers derived from a bifunctional 1,1′-di(4-carbonylphenyl)-2,2′-biimidazoline ligand. CrystEngComm 2020. [DOI: 10.1039/d0ce00814a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three 3D ZnII/CdII CPs were synthesized to act as multiresponsive luminescent sensors for Fe3+, Cr2O72− and NZF antibiotic. The photocatalytic studies indicate that the CPs 1–3 have good photocatalytic capability in degradation of MB.
Collapse
Affiliation(s)
- Jun Wang
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Ning-Ning Chen
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Jin Qian
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Xuan-Rong Chen
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Xin-Yue Zhang
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Liming Fan
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| |
Collapse
|