1
|
Ermakova EV, Zvyagina AI, Kharlamova AD, Abel AS, Andraud C, Bessmertnykh-Lemeune A. Preparation of Langmuir-Blodgett Films from Quinoxalines Exhibiting Aggregation-Induced Emission and Their Acidochromism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15117-15128. [PMID: 38979711 DOI: 10.1021/acs.langmuir.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The development of aggregation-induced emission (AIE)-exhibiting compounds heavily relies on our evolving comprehension of their behavior at interfaces, an understanding that still remains notably limited. In this study, we explored the preparation of two-dimensional (2D) sensing films from 2,3-diphenylquinoxaline-based diazapolyoxa- and polyazamacrocycles displaying AIE via the Langmuir-Blodgett (LB) technique. This systematic investigation highlights the key role of the heteroatom-containing tether of 2,3-diphenylquinoxalines in the successful fabrication of Langmuir layers at the air-water interface and the transfer of AIE-emitting supramolecular aggregates onto solid supports. Using both diazapolyoxa- and polyazamacrocycles, we prepared AIE-exhibiting monolayer films containing emissive supramolecular aggregates on silica, mica, and quartz glass and characterized them using ultraviolet-visible (UV-vis) and photoluminescence (PL) spectroscopies, atomic force microscopy (AFM) imaging, and fluorescence microscopy. We also obtained multilayer AIE-emitting films through the LB technique, albeit with increased complexity. Remarkably, by employing the smallest macrocycle N2C3Q, we successfully prepared LB films suitable for the visual detection of acidic vapors. This sensing material, which contains a much lesser amount of organic dye compared with traditional drop-cast films, can be regenerated and utilized for real-life sample analysis, such as monitoring the presence of ammonia in the air and the freshness of meat.
Collapse
Affiliation(s)
- Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Alexandra I Zvyagina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Alisa D Kharlamova
- Department of Chemistry, Lomonosov Moscow State University, 1-3, Leninskie Gory, Moscow 119991, Russia
| | - Anton S Abel
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
- Department of Chemistry, Lomonosov Moscow State University, 1-3, Leninskie Gory, Moscow 119991, Russia
| | - Chantal Andraud
- Université de Lyon, CNRS UMR 5182, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69342 Lyon, France
| | - Alla Bessmertnykh-Lemeune
- Université de Lyon, CNRS UMR 5182, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69342 Lyon, France
| |
Collapse
|
2
|
Hou X, Song Y, Lv Y, Wang P, Chen K, Li G, Guo L. Preparation of temperature-responsive nanomicelles with AIE property as fluorescence probe for detection of Fe 3+ and Fe 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122254. [PMID: 36577245 DOI: 10.1016/j.saa.2022.122254] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Temperature-responsive nanomicelles with aggregation induced emission (AIE) property were prepared by the host-guest complexation of ferrocene functionalized tetraphenyl (TPE-Fc) and β-cyclodextrin-poly (N-isopropylacrylamide) (β-CD-(PNIPAM)7). The AIE chromophore TPE-Fc bound to the hydrophobic cavity of cyclodextrin serves as the core of micelles, and temperature sensitive PNIPAM serves as the shell to give the micelles good solubility. The size of the nanomicelles is about 100 nm. At the excitation wavelength of 340 nm, the strongest fluorescent emission peak was 421 nm. The introduction of cyclodextrin star polymer increased the fluorescence intensity of nanomicelles, thus improving the recognition of probe to Fe3+ and Fe2+. The fluorescent probe can quickly detect Fe3+ and Fe2+ in water within 5 min even in the presence of various interfering ions. The detection limits of Fe3+ and Fe2+ were 1.04 μM and 0.78 μM, respectively in the range of 10-90 μM. The formation of complex between the probe and Fe3+/Fe2+ was supported by Job's plot. The probe was successfully applied to the detection of Fe3+and Fe2+ in actual water sample with a good recovery. In addition, a possible sensing mechanism for the interaction of iron ions with amide bond groups of nanomicelles was proposed.
Collapse
Affiliation(s)
- Xinhui Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yifan Song
- Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China
| | - Yupeng Lv
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Peiyao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Kun Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Lei Guo
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
3
|
Li Q, Xu S, He L, Huang K, Zhang X, Qin D. A new zinc-organic framework with 1D channel for constructing a ratiometric Al 3+-selective sensor and four inputs INHIBIT logic gate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121461. [PMID: 35691163 DOI: 10.1016/j.saa.2022.121461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
To develop Al3+ fluorescent sensor is significant because the abnormal levels of Al3+ in environment may pose great threat to human body. Herein, a novel metal-organic framework {Zn(Dpada)(Imdba)·H2O}n (Dpada = 3, 6-di(1H-imidazol-1-yl) pyridazine and Imdba = 2, 2'-iminodibenzoic acid), named Zn-MOF, has been architected with one-dimensional channel under hydrothermal conditions. Zn-MOF exhibits good thermal and solvent stability and can also keep structural integrity over the pH range of 5.0 - 9.0. Fluorescent experiments show that Zn-MOF has high selectivity and sensitivity towards Al3+ via ratiometric fluorescence signal changes (F470 nm/F390 nm) and the detection limit is evaluated to be 0.69 μM. In addition, Zn-MOF performs good recyclability in sensing of Al3+ with at least 5 cycles. Besides, an INHIBIT logic gate has been constructed with chemical ions (Al3+, Cr3+, Fe3+ and Hg2+) as input signals and emission ratio (F470 nm/F390 nm) as output signal. Significantly, Zn-MOF can be applied to tracing Al3+ using real water samples, presenting great potential in water quality monitoring application.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Siji Xu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Liangyu He
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Xiangyu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dabin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
4
|
Hasi QM, Su XH, Mu XT, Wei YM. Synthesis, crystal structures and selective luminescence sensing property of Zn(II) coordination polymers based on semi-rigid tricarboxylic acid ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Shao J, Ni J, Chen W, Liu P, Liang Y, Li G, Wen L, Wang F. A Novel Co‐based MOF as an Efficient Multifunctional Fluorescent Chemosensor for the Determination of Fe
3+
and Cr
2
O
7
2−
in Aqueous Phase. ChemistrySelect 2022. [DOI: 10.1002/slct.202202094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juanjuan Shao
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Jianling Ni
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Weimin Chen
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Penglai Liu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Yu Liang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Guangjun Li
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Lili Wen
- College of Chemistry Central China Normal University Wuhan Hubei 430079 China
| | - Fangming Wang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| |
Collapse
|
6
|
Zeng JY, Wang XS, Sun YX, Zhang XZ. Research progress in AIE-based crystalline porous materials for biomedical applications. Biomaterials 2022; 286:121583. [DOI: 10.1016/j.biomaterials.2022.121583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
|
7
|
Asad M, Imran Anwar M, Abbas A, Younas A, Hussain S, Gao R, Li LK, Shahid M, Khan S. AIE based luminescent porous materials as cutting-edge tool for environmental monitoring: State of the art advances and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Yuan R, Huang K, Zou Y, Zhang X, Qin D. Two multifunctional luminescent cobalt metal-organic frameworks for selectively and sensitively sensing of Cu2+, MnO4- and picric acid in water. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Yuan Z, Hou G, Han L. A Terbium‐Based MOF as fluorescent probe for the detection of Malachite Green, Fe
3+
and MnO
4
−. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhuang‐Dong Yuan
- School of Chemistry Chemical Engineering and Materials Jining University Qufu 273155 P. R. China
| | - Guo‐Zheng Hou
- School of Chemistry Chemical Engineering and Materials Jining University Qufu 273155 P. R. China
| | - Li‐Juan Han
- School of Chemistry Chemical Engineering and Materials Jining University Qufu 273155 P. R. China
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
10
|
Zou Y, Huang K, Zhang X, Qin D, Zhao B. Tetraphenylpyrazine-Based Manganese Metal-Organic Framework as a Multifunctional Sensor for Cu 2+, Cr 3+, MnO 4-, and 2,4,6-Trinitrophenol and the Construction of a Molecular Logical Gate. Inorg Chem 2021; 60:11222-11230. [PMID: 34259513 DOI: 10.1021/acs.inorgchem.1c01226] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A tetraimidazole-decorating tetraphenylpyrazine has been designed and utilized for the fabrication of a novel metal-organic framework (MOF), denoted as {Mn(Tipp)(A)2}n·2H2O (TippMn, where Tipp = 2,3,5,6-tetrakis[4-[(1H-imidazol-1-yl)methyl]phenyl]pyrazine and A = deprotonation of 1,4-naphthalenedicarboxylic acid), through hydrothermal synthesis. Structural analysis reveals that TippMn possesses a 2-fold-interpenetrated 4,8-connected three-dimensional (3D) network with an unprecedented {416·612}{44·62} topology. Fluorescent spectral investigations indicate that TippMn shows discriminative fluorescence when treated by Cr3+ and Cu2+, giving an INHIBIT logical gate performance. Meanwhile, TippMn can be further used as a sensor for MnO4- and 2,4,6-trinitrophenol (TNP) by fluorescence quenching. Notably, the sensing processes toward Cu2+, Cr3+, MnO4-, and TNP are labeled with high selectivity and sensitivity, quick response, and good recyclability. It is anticipated that this MOF-based versatile sensor could shed light on the exploration of MOFs for fluorescent sensors, optical switches, etc.
Collapse
Affiliation(s)
- Yi Zou
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Xiangyu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Dabin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Bin Zhao
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China.,Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
11
|
Liu Y, Qiu Q, Zhang X, Huang K, Qin D. Tetra-imidazole functionalized pyrene for constructing Co-MOF and its application for sensing of cyanide ion. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Su C, Guo F. A Cd(II)-based MOF as a dual-responsive luminescent probe for highly selective detection of Fe3+ cation and nitrofurantoin. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Bagheri AR, Aramesh N, Bilal M. New frontiers and prospects of metal-organic frameworks for removal, determination, and sensing of pesticides. ENVIRONMENTAL RESEARCH 2021; 194:110654. [PMID: 33359702 DOI: 10.1016/j.envres.2020.110654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Pesticides have been widely used in agriculture to control, reduce, and kill insects. Humans are also being using pesticides to control insidious animals in daily life. By these practices, a huge volume of pesticides is introduced to the environment. Despite broad-spectrum applicability, pesticides also have hazardous effects on both humans and animals at high and low concentrations. Long-term exposure to pesticides can cause different diseases, like leukemia, lymphoma, and cancers of the brain, breasts, prostate, testis, and ovaries. Reproductive disorders from pesticides include birth defects, stillbirth, spontaneous abortion, sterility, and infertility. Therefore, the application of determination and treatment methods for pre-concentration and removal of these toxic materials from the environment appears a vital concern. To date, different materials and approaches have been employed for these purposes. Among these approaches, multifunctional metal-organic frameworks (MOFs)-assisted adsorption and determination processes have always been in the spotlight. These facts are due to exclusive properties of MOFs in terms of the crystallinity, large surface area, high chemical, and physical stability, and controllable structure as well as unique features of adsorption and determination process in terms of simple, easy, cheap, available method and ability to use in large and industrial scales. In the present work, we illustrate the exceptional features of MOFs as well as the possible mechanism for the adsorption of pesticides by MOFs. The use of these fantastic materials for pre-concentration and removal of pesticides are extensively explored. In addition, the performance of MOFs was compared with other adsorbents. Finally, the new frontiers and prospects of MOFs for the determination, sensing, and removal of pesticides are presented.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|