1
|
Zhang L, Di S, Lin H, Wang C, Yu K, Lv J, Wang C, Zhou B. Nanomaterial with Core-Shell Structure Composed of {P 2W 18O 62} and Cobalt Homobenzotrizoate for Supercapacitors and H 2O 2-Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1176. [PMID: 37049271 PMCID: PMC10097129 DOI: 10.3390/nano13071176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Designing and preparing dual-functional Dawson-type polyoxometalate-based metal-organic framework (POMOF) energy storage materials is challenging. Here, the Dawson-type POMOF nanomaterial with the molecular formula CoK4[P2W18O62]@Co3(btc)2 (abbreviated as {P2W18}@Co-BTC, H3btc = 1,3,5-benzylcarboxylic acid) was prepared using a solid-phase grinding method. XRD, SEM, TEM et al. analyses prove that this nanomaterial has a core-shell structure of Co-BTC wrapping around the {P2W18}. In the three-electrode system, it was found that {P2W18}@Co-BTC has the best supercapacitance performance, with a specific capacitance of 490.7 F g-1 (1 A g-1) and good stability, compared to nanomaterials synthesized with different feedstock ratios and two precursors. In the symmetrical double-electrode system, both the power density (800.00 W kg-1) and the energy density (11.36 Wh kg-1) are greater. In addition, as the electrode material for the H2O2 sensor, {P2W18}@Co-BTC also exhibits a better H2O2-sensing performance, such as a wide linear range (1.9 μM-1.67 mM), low detection limit (0.633 μM), high selectivity, stability (92.4%) and high recovery for the detection of H2O2 in human serum samples. This study provides a new strategy for the development of Dawson-type POMOF nanomaterial compounds.
Collapse
Affiliation(s)
- Lanyue Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Shan Di
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Hong Lin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Chunmei Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Chunxiao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
2
|
Zhao T, Cui LP, Yu K, Lv JH, Ma YJ, Yang AS, Zhou BB. Porous {P 6Mo 18O 73}-type Poly(oxometalate) Metal-Organic Frameworks for Improved Pseudocapacitance and Electrochemical Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30099-30111. [PMID: 35729744 DOI: 10.1021/acsami.2c06369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
{P6Mo18} poly(oxometalate) (POM) clusters have huge steric hindrance and limited active oxygen atoms, which make them difficult to combine with metal-organic units to form three-dimensional (3D) porous structures. Therefore, functionalization of such POMs has always been a bottleneck that is difficult to break through. In this study, {P6Mo18} POM was successfully grafted on a lock-like metal-organic chain to generate a multiporous coordination polymer, [{Na(H2O)(H2btb)}{Cu4I(H2O)(pz)5Cl}{H2Sr⊂P6Mo2VMo16VIO73}]·3H2O (1) (pz = pyrazine; btb = 1,4-bis(1,2,4-triazole) butane). Meanwhile, a zero-dimensional (0-D) control compound with only btb ligands as counterions, (H4btb)[H4Sr⊂P6Mo2VMo16VIO73]·3H2O (2), was also obtained via a hydrothermal reaction. Compound 1 represents the first basket-type 3D poly(oxometalate) metal-organic framework (POMOF) assembly, which possesses interpenetrating pores and complex topology. 1-GO-CPE displays improved supercapacitor (SC) performance (the specific capacitance of 929.4 F g-1 at a current density of 3 A g-1 with 94.1% of cycle efficiency after 5000 cycles) compared with 2-GO-CPE and most reported POMOF electrode materials, which may be due to the outstanding redox capability of basket-POM, introduction of metal-organic chains, intersecting pores, and excellent conductivity of graphene. An asymmetric SC device with 1-GO-CPE as the negative electrode exhibits an energy density of 29.7 Wh kg-1 with a power density of 3148.2 W kg-1 and long-lasting cycling life. In addition, 1-GO-GCE as an electrochemical sensor responds to dopamine (DA) at a voltage of 0.40 V and shows lower detection limits (0.19 μM (signal-to-noise ratio (SNR) = 3)), higher selectivity, and good reproducibility in the linear range of 0.56 μM to 0.24 mM. The ability to accurately detect the content of DA in biological samples further proves the feasibility of the sensor in practical applications.
Collapse
Affiliation(s)
- Tingting Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Li-Ping Cui
- Academy of Life Science and Technology, State Key Laboratory of Molecular Genetics, Harbin Normal University, Harbin 150025, P. R. China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Harbin Normal University, Harbin 150025, Heilongjiang, P. R. China
| | - Jing-Hua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Ya-Jie Ma
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Harbin Normal University, Harbin 150025, Heilongjiang, P. R. China
| | - Ao-Shuang Yang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Bai-Bin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Harbin Normal University, Harbin 150025, Heilongjiang, P. R. China
| |
Collapse
|