1
|
Tang M, Sun J, Naibao H, Wang B, Ge X, Dong W, Li W, Sun X. An improvement on the electrocatalytic performance of ZIF-67 by in situself-growing CNTs on surface. NANOTECHNOLOGY 2024; 35:235601. [PMID: 38430570 DOI: 10.1088/1361-6528/ad2f73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/01/2024] [Indexed: 03/04/2024]
Abstract
Efficient and robust oxygen reduction reaction (ORR) catalysts are essential for the development of high-performance anion-exchange membrane fuel cells (AEMFC). To enhance the electrochemical performance of metal-organic frameworks of cobalt-based zeolite imidazolium skeleton (ZIF-67), this study reported a novel ZIF-67-4@CNT byin situgrowing carbon nanotubes (CNTs) on the surface of ZIF-67 via a mild two-step pyrolysis/oxidation treatment. The electrochemical results showed that the as-prepared ZIF-67-4@CNT after CTAB modification exhibited excellent catalytic activity with good stability, with Eonset, E1/2, and Ilimit, respectively were 0.98 V (versus RHE), 0.87 V (versus RHE) and 6.04 mA cm-2@1600 rpm, and a current retention rate of about 94.21% after polarized at 0.80 V for 10 000 s, which were all superior to that of the commercial 20 wt% Pt/C. The excellent ORR catalytic performance was mainly attributed to the large amount of thein situgrowing CNTs on the surface, encapsulated with a wide range of valence states of metallic cobalt.
Collapse
Affiliation(s)
- Miao Tang
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Jintao Sun
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Huang Naibao
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Bin Wang
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Xiaowen Ge
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Wenjing Dong
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Wanting Li
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| | - Xiannian Sun
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
| |
Collapse
|
2
|
Wang Y, Yu W, Zhang R, He X, Hou J, Li X. Confined Co@NCNTs as highly efficient catalysts for activating peroxymonosulfate: free radical and non-radical co-catalytic mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20149-20158. [PMID: 38372922 DOI: 10.1007/s11356-024-32416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
A series of transition metal (Co, Ni, Fe) nanoparticles were confined in N-doped carbon nanotubes (NCNTs) prepared (Co@NCNTs, Ni@NCNTs, and Fe@NCNTs) by the polymerization method. The structure and composition of catalysts were well characterized. The catalytic activity of catalysts for activating peroxymonosulfate (PMS) was conducted via acid orange 7 (AO7) degradation. Among the catalysts, Co@NCNTs performed the best catalytic activity. Additionally, Co@NCNTs performed good catalytic activity in pH values of 2.39-10.98. Cl- and SO42- played a promoting roles in AO7 degradation. NO3- presented a weak effect on the catalytic performance of Co@NCNTs, while HCO3- and CO32- significantly suppressed the catalytic performance of Co@NCNTs. Both non-radical (1O2 and electron transfer) and free-radical (·OH and SO4·-) pathways were detected in the Co@NCNTs/PMS system. Notably, 1O2 was identified to be the main active specie in this study. The catalytic activity of Co@NCNTs gradually decreased after cycle reuse of Co@NCNTs. Finally, the toxicity of the AO7 degradation solution in the study was evaluated by Chlorella pyrenoidosa.
Collapse
Affiliation(s)
- Yuan Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Wenyue Yu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Rongfa Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xiudan He
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jifei Hou
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Xuede Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
3
|
Pimu S, Yodsin N, Maneewan S, Kanthachan J, Namuangruk S, Kongpatpanich K. Impact of exposed crystal facets on oxygen reduction reaction activity in zeolitic imidazole frameworks. Dalton Trans 2023; 52:15377-15383. [PMID: 37615038 DOI: 10.1039/d3dt02172f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
ZIF-67 is a representative type of metal-organic framework (MOF) developed for the oxygen reduction reaction (ORR) owing to its robust structure in alkaline electrolytes and the presence of the redox-active Co2+ species in the structure. In this work, the improvement of the ORR electrolytic performance of ZIF-67 in its pure phase by optimization of its crystal morphology and crystal facets has been presented. ZIF-67 nanocubes exhibit higher ORR activity than their bulk crystals. The enriched (100) facet in the nanocube crystals provides a higher number of exposed Co2+ sites resulting in improved ORR performances. Moreover, DFT study suggests a distinguished mechanism in the (100) facet highlighting the importance of crystal facets in electrochemical performances.
Collapse
Affiliation(s)
- Sorawich Pimu
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| | - Nuttapon Yodsin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Sirawee Maneewan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| | - Jaruwan Kanthachan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Kanokwan Kongpatpanich
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| |
Collapse
|
4
|
Exploiting Asymmetric Co States in a Co-N-C Catalyst for an Efficient Oxygen Reduction Reaction. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Co-NC catalysts have attracted extensive concerns derived from their high oxygen reduction reaction (ORR) activity, but the catalytic mechanism of Co species with different forms remains controversial. Herein, we prepare Co-NC catalysts with a cobalt nanoparticle-supported and nitrogen-doped carbon structure using the ZIF-67 precursor, in which the Co states in the catalyst present an asymmetric state of an exposed carbon coating (Asy-Co) and a symmetric state of buried carbon (Sy-Co). The acid etching process removed the exposed asymmetric cobalt nanoparticles on the surface. The specific role of cobalt nanoparticles with different forms in the Co-NC catalysts was comprehensively clarified through analyzing the chemical coordination environment by XPS and XAFS. The half-wave potential (E1/2 = 0.83 V) and onset potential (Eon = 1.04 V) of the Co-NC catalysts obtained after acid etching decreased significantly. Thus, the cobalt species removed by the acid etching process offered confirmed contributions to the catalytic activity. This work puts forward an important reference for the design and exploitation of non-noble metal catalysts using symmetry-derived motifs.
Collapse
|
5
|
Wang C, Yu F, Lu K, Wang Z, Yu J, Bao W, Wang G, Peng B, Guo X. Facile Synthesis of Metal–Organic Framework ZIF-67 via a Multi-Inlet Vortex Mixer Using Various Solvents: MeOH, EtOH, H 2O, and Baijiu. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenxu Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
- Carbon Neutralization and Environmental Catalytic Technology Laboratory, Shihezi University, Shihezi 832003, P. R. China
- Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, PR China
| | - Ke Lu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhimou Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jie Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Wentao Bao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Gang Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Banghua Peng
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
6
|
Dual enzyme electrochemiluminescence sensor based on in situ synthesis of ZIF-67@AgNPs for the detection of IMP in fresh meat. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Synthesis of ZIF-67 derived Co-based catalytic membrane for highly efficient reduction of p-nitrophenol. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Wang C, Yuan H, Yu F, Zhang J, Li Y, Bao W, Wang Z, Lu K, Yu J, Bai G, Wang G, Peng B, Zhang L. Enhanced oxygen reduction reaction performance of Co@N-C derived from metal-organic frameworks ZIF-67 via a continuous microchannel reactor. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|