1
|
Ofudje EA, Al-Ahmary KM, Alshdoukhi IF, Alrahili MR, Kavil YN, Alelyani SS, Bakheet AM, Al-Sehemi AG. Nano round polycrystalline adsorbent of chicken bones origin for Congo red dye adsorption. Sci Rep 2024; 14:7809. [PMID: 38565664 PMCID: PMC10987612 DOI: 10.1038/s41598-024-57412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Nano round polycrystalline adsorbent (NRPA) of chicken bones origin was utilize as effective adsorbent in Congo red dye removal via aqueous media. The NRPA adsorbent was prepared via thermal decomposition and its structure was investigated with the aids of Transmission Electron Microscopy, Fourier Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy, Energy Dispersive X-ray Analysis (EDX), and X-ray Diffractometer (XRD). A monophasic apatite phase was confirmed from XRD investigation, while functional groups analysis showed that NRPA possessed CO32-, PO43- and OH- absorption bands. The maximum adsorption capacities derived from Langmuir isotherm is 98.216 mg g-1. From the combined values of n from Freundlich and separation factor (RL) of Langmuir models, the adsorption of CR by NRPA is favourable. Thermodynamic values of 5.280 kJ mol-1 and 16.403 kJ mol-1 K-1 were found for ΔH° and ΔS° respectively. The entire values of ΔG° which ranges from - 35.248 to - 459.68 kJ mol-1 were all negative at different temperatures. Thus, nano polycrystalline adsorbent of chicken bone origin can serve as excellent adsorbent in Congo red dye removal from waste water.
Collapse
Affiliation(s)
- Edwin Andrew Ofudje
- Department of Chemical Sciences, Mountain Top University, Ibafo, Ogun State, Nigeria.
| | | | - Ibtehaj F Alshdoukhi
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Science, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mazen Rzeeg Alrahili
- Physics Department, School of Science, Taibah University, Janadah Bin Umayyah Road, 42353, Medina, Saudi Arabia
| | - Yasar N Kavil
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Renewable Environment Company for Environmental Consulting (REC), 21589, Jeddah, Saudi Arabia
| | - Saeed Saad Alelyani
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- Renewable Environment Company for Environmental Consulting (REC), 21589, Jeddah, Saudi Arabia
| | - Ammar M Bakheet
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, 21589, Jeddah, Saudi Arabia
- ChemEconomy, Non Profit Organization for Environment Protection, 46429, Yanbu, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 61413, Abha, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, 61413, Abha, Saudi Arabia
| |
Collapse
|
2
|
High Regeneration of ZnAl/NiAl-Magnetite Humic Acid for Adsorption of Congo Red from Aqueous Solution. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
3
|
Challa M, Chinnam S, Rajanna AM, Nandagudi A, Yallur BC, Adimule V. Adsorption efficacy of functionalized Cu-BDC MOFs tethered 2-mercaptobenzimidazole analogue: A comparative study. Heliyon 2023; 9:e13223. [PMID: 36793962 PMCID: PMC9922976 DOI: 10.1016/j.heliyon.2023.e13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
A novel metal-organic framework [MOFs], and 2-[benzo [d]thiazol-2-ylthio)-3-hydroxy acrylaldehyde-Cu-benzene dicarboxylic acid was synthesized by solvothermal method and characterized using p-XRD, FSEM-EDX, TGA, BET, FTIR. The tethered organic linker, 2-[benzo [d]thiazol-2-ylthio)-3-hydroxyacrylaldehyde was commonly known as 2-mercaptobenimidazole analogue [2-MBIA]. Analysis of BET disclosed that addition of 2-MBIA to Cu-benzene dicarboxylic acid [Cu-BDC], reduced the crystallite size from 70.0 nm to 65.90 nm, surface area from 17.95 to 17.02 m2 g-1 and enhances the pore size from 5.84 nm with 0.027 cm3 g-1 pore volume to 8.74 nm with 0.361 cm3 g-1 pore volume. Batch experiments were conducted to optimize pH, adsorbent dosage, and, Congo red (CR) concentration. The adsorption percentage of CR on the novel MOFs was 54%. Adsorption kinetic studies revealed that the uptake adsorption capacity at equilibrium was 184.7 mg/g from pseudo-first-order kinetics which gave a good fit with the experimental data. Intraparticle diffusion model explained the process of the adsorption mechanism: diffusion from the bulk solution onto the porous surface of the adsorbent. Freundlich and Sips models were the best fit models of the several non-linear isotherm models. Temkin isotherm suggested the adsorption of CR on MOFs was of an exothermic nature.
Collapse
Affiliation(s)
- Malathi Challa
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
- Corresponding author.
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Ambika Madalakote Rajanna
- Department of Physics, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Apurva Nandagudi
- Department of Science & Humanities, PES University, Bengaluru 560085, Karnataka, India
| | - Basappa C. Yallur
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Vinayak Adimule
- Angadi Institute of Technology and Management (AITM), Savagaon Road, Belagavi 591108, Karnataka, India
| |
Collapse
|
4
|
Saravanan A, Kumar PS, Rangasamy G. Removal of Toxic Pollutants from Industrial Effluent: Sustainable Approach and Recent Advances in Metal Organic Framework. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Anbalagan Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai−602105, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai−603110, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai−603110, India
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab−140413, India
| |
Collapse
|
5
|
Mogale R, Akpomie KG, Conradie J, Langner EH. Isoreticular Aluminium-based Metal-Organic Frameworks with structurally similar organic linkers as highly efficient dye adsorbents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Yang YT, Tu CZ, Shi JY, Yang XL, Liu JJ, Cheng FX. Cu(I)-organic framework as a platform for high-efficiency selective adsorption of methylene blue and reversible iodine uptake. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Zhang X, Fu J, Wang G, Hu H, Zhang DS, Zhang YZ, Zhang YK, Zhang ZW, Zhou WF, Li TT, Lv D, Geng L. Structure modulation, selective dye adsorption and catalytic CO2 transformation of four pillared-layer metal-organic frameworks. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Harja M, Buema G, Bucur D. Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci Rep 2022; 12:6087. [PMID: 35414682 PMCID: PMC9005715 DOI: 10.1038/s41598-022-10093-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/29/2022] [Indexed: 01/08/2023] Open
Abstract
The Congo Red dye was removed from a simulated textile wastewater solution using fly ash from a local power plant. The characterisation of fly ash was studied in detail by SEM, EDX, XRD, FTIR, BET surface area and TGA techniques. The influence of four parameters (contact time, initial concentration, adsorbent dose, and temperature) was analysed, the results showing that the adsorption capacity depends on these parameters. Thermodynamic and regeneration investigations as well are presented. The fit to pseudo-second-order kinetics models suggests that the removal process is a chemical adsorption. The Langmuir model fitted the experimental data, with a maximum adsorption capacity of 22.12 mg/g. The research is a preliminary case study that highlights that fly ash posed a very good potential as a material for Congo Red dye removal.
Collapse
Affiliation(s)
- Maria Harja
- Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Prof.dr.doc. Dimitrie Mangeron Street, 700050, Iasi, Romania.
| | - Gabriela Buema
- National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050, Iasi, Romania.
| | - Daniel Bucur
- Department of Pedotechnics, Faculty of Agriculture, University of Life Sciences, 3, Mihail Sadoveanu Alley, 700490, Iasi, Romania.
| |
Collapse
|
9
|
Pooresmaeil M, Namazi H. Chitosan coated Fe 3O 4@Cd-MOF microspheres as an effective adsorbent for the removal of the amoxicillin from aqueous solution. Int J Biol Macromol 2021; 191:108-117. [PMID: 34537293 DOI: 10.1016/j.ijbiomac.2021.09.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/28/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022]
Abstract
In this work, for the first time, a new magnetic cadmium-based MOFs (Fe3O4@Cd-MOF) was successfully synthesized in a green way and then modified with chitosan (CS) in the microsphere form (Fe3O4@Cd-MOF@CS). The obtained materials were fully characterized by several techniques. In the following, the efficiency of Fe3O4@Cd-MOF@CS was explored for the removal of amoxicillin (AMX). The outcome of the adsorption study showed that the removal efficiency is affected by CS and reaches its optimum at pH 8 and contact time of 240 min. Under optimized conditions, over 75% of AMX was removed. The kinetic and the isotherm of the adsorption were fit with the pseudo-second-order model and the Langmuir adsorption isotherm respectively. Eventually, the maximum adsorption capacity was obtained ~103.09 mg/g. Interestingly, these findings convince that the newly prepared Fe3O4@Cd-MOF@CS could be proposed as a promising magnetically separable adsorbent for antibiotic contaminants removal from the aqueous solution.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
10
|
Simonescu CM, Tătăruş A, Culiţă DC, Stănică N, Butoi B, Kuncser A. Facile Synthesis of Cobalt Ferrite (CoFe 2O 4) Nanoparticles in the Presence of Sodium Bis (2-ethyl-hexyl) Sulfosuccinate and Their Application in Dyes Removal from Single and Binary Aqueous Solutions. NANOMATERIALS 2021; 11:nano11113128. [PMID: 34835892 PMCID: PMC8621345 DOI: 10.3390/nano11113128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
A research study was conducted to establish the effect of the presence of sodium bis-2-ethyl-hexyl-sulfosuccinate (DOSS) surfactant on the size, shape, and magnetic properties of cobalt ferrite nanoparticles, and also on their ability to remove anionic dyes from synthetic aqueous solutions. The effect of the molar ratio cobalt ferrite to surfactant (1:0.1; 1:0.25 and 1:0.5) on the physicochemical properties of the prepared cobalt ferrite particles was evaluated using different characterization techniques, such as FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption analysis, and magnetic measurements. The results revealed that the surfactant has a significant impact on the textural and magnetic properties of CoFe2O4. The capacity of the synthesized CoFe2O4 samples to remove two anionic dyes, Congo Red (CR) and Methyl Orange (MO), by adsorption from aqueous solutions and the factors affecting the adsorption process, such as contact time, concentration of dyes in the initial solution, pH of the media, and the presence of a competing agent were investigated in batch experiments. Desorption experiments were performed to demonstrate the reusability of the adsorbents.
Collapse
Affiliation(s)
- Claudia Maria Simonescu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu Street, No. 1-7, District 1, 011061 Bucharest, Romania
- Correspondence: or (C.M.S.); (A.T.); (D.C.C.); Tel.: +40-753-071-418 (C.M.S.); +60-764-000-710 (A.T.); +40-765-309-363 (D.C.C.)
| | - Alina Tătăruş
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu Street, No. 1-7, District 1, 011061 Bucharest, Romania
- National Research and Development Institute for Industrial Ecology, INCD-ECOIND, Drumul Podul Dambovitei Street, No. 71-73, District 6, 060652 Bucharest, Romania
- Correspondence: or (C.M.S.); (A.T.); (D.C.C.); Tel.: +40-753-071-418 (C.M.S.); +60-764-000-710 (A.T.); +40-765-309-363 (D.C.C.)
| | - Daniela Cristina Culiţă
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
- Correspondence: or (C.M.S.); (A.T.); (D.C.C.); Tel.: +40-753-071-418 (C.M.S.); +60-764-000-710 (A.T.); +40-765-309-363 (D.C.C.)
| | - Nicolae Stănică
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Bogdan Butoi
- National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania;
| | - Andrei Kuncser
- National Institute for Materials Physics, Atomistilor Street 405, 077125 Măgurele, Romania;
| |
Collapse
|