1
|
Xu L, Jiang X, Liu Y, Liang K, Gao M, Kong B. Fluorogen-Functionalized Mesoporous Silica Hybrid Sensing Materials: Applications in Cu 2+ Detection. Chemistry 2024; 30:e202302589. [PMID: 37752657 DOI: 10.1002/chem.202302589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Since Cu2+ ions play a pivotal role in both ecosystems and human health, the development of a rapid and sensitive method for Cu2+ detection holds significant importance. Fluorescent mesoporous silica materials (FMSMs) have garnered considerable attention in the realm of chemical sensing, biosensing, and bioimaging due to their distinctive structure and easily functionalized surfaces. As a result, numerous Cu2+ sensors based on FMSMs have been devised and extensively applied in environmental and biological Cu2+ detection over the past few decades. This review centers on the recent advancements in the methodologies for preparing FMSMs, the mechanisms underlying sensing, and the applications of FMSMs-based sensors for Cu2+ detection. Lastly, we present and elucidate pertinent perspectives concerning FMSMs-based Cu2+ sensors.
Collapse
Affiliation(s)
- Lijie Xu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Xiaoping Jiang
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Yuhong Liu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Kang Liang
- School of Chemical Engineering Graduate, School of Biomedical Engineering, and Australian Centre for Nano Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Meng Gao
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Karadağ Memiş S, Ermiş E, Özcan AS. Drug removal and release studies of mesoporous and modified silica. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2172585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Selin Karadağ Memiş
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| | - Emel Ermiş
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| | - Asiye Safa Özcan
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
| |
Collapse
|
3
|
Zhang M, Zhang Y, Gan M, Xie L, Wang J, Jia W, Bian W, Shuang S, Choi MMF. Facile synthesis of sulfur and oxygen co-doped graphitic carbon nitride quantum dots for on-off detection of Cu 2+in real samples and living cells. Methods Appl Fluoresc 2022; 10. [PMID: 35705102 DOI: 10.1088/2050-6120/ac7944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/15/2022] [Indexed: 11/12/2022]
Abstract
A fluorescent sulfur and oxygen co-doped graphitic carbon nitride quantum dots (S,O-CNQDs) were prepared from ethylenediaminetetraacetic acid disodium salt dihydrate and thiourea as the carbon and sulfur sources. The morphology and surface functional groups of S,O-CNQDs were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The fluorescence of S,O-CNQDs could be quenched efficiently by Cu2+under the optimum conditions. The S,O-CNQDs could function as an excellent fluorescent probe for Cu2+detection with a wide linear range of 0.50-15μM and a low detection limit of 0.58 nM. In addition, this fluorescent probe was employed for monitoring Cu2+in samples of tap water, lake water, human serum and urine with good recoveries from 99.0% to 110.0%. Moreover, the S,O-CNQDs with high cell penetration and low cytotoxicity were utilized for Cu2+detection in living cells. Owing to the excellent properties of S,O-CNQDs, the as-prepared S,O-CNQDs can be a potential candidate for biological applications.
Collapse
Affiliation(s)
- Mengting Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yulu Zhang
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Mingyu Gan
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Liping Xie
- General Hospital of Tisco, Sixth Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Jing Wang
- Lvliang People's Hospital, Lvliang, 033000, People's Republic of China
| | - Weihua Jia
- General Hospital of Tisco, Sixth Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Wei Bian
- Department of Medical Chemistry, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.,Lvliang People's Hospital, Lvliang, 033000, People's Republic of China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Martin M F Choi
- Bristol Chinese Christian Church, c/o Tyndale Baptist Church, 137-139 Whiteladies Road, Bristol, BS8 2QG, United Kingdom
| |
Collapse
|
4
|
Singh G, Diksha, Mohit, Suman, Sushma, Devi A, Gupta S, Espinosa-Ruíz C, Angeles Esteban M. Pyridine derived organosilatranes and their silica nanoparticles as “Turn-on” fluorescence sensor for selective detection of Zn2+ ions and their cytotoxicity evaluation. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Zhang YY, Zhu T, Wang H, Zheng L, Chen M, Wang W. Preparation of bis-Schiff base immobilized mesoporous SBA-15 nanosensor for the fluorogenic sensing and adsorption of Cu2+. Dalton Trans 2022; 51:7210-7222. [DOI: 10.1039/d2dt00933a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inorganic−organic chemosensing material (MS-NSP) was developed by anchoring the bis-Schiff base fluorophore onto the channel surface of SBA-15 mesoporous silica surface with a quaternary ammonium linker. The mesostructure, morphology,...
Collapse
|