1
|
Moslehi MH, Zadeh MS, Nateq K, Shahamat YD, Khan NA, Nasseh N. Statistical computational optimization approach for photocatalytic-ozonation decontamination of metronidazole in aqueous media using CuFe 2O 4/SiO 2/ZnO nanocomposite. ENVIRONMENTAL RESEARCH 2024; 242:117747. [PMID: 38016498 DOI: 10.1016/j.envres.2023.117747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
The increasing use of pharmaceuticals and the ongoing release of drug residues into the environment have resulted in significant threats to environmental sustainability and water safety. In this sense, developing a robust and easy-recovered magnetic nanocomposite with eminent photocatalytic activity is very imperative for detoxifying pharmaceutical compounds. Herein, a systematic study was conducted to investigate the photocatalytic ozonation for eliminating metronidazole (MET) from aqueous media utilizing the CuFe2O4/SiO2/ZnO heterojunction under simulated sunlight irradiation. The composite material was fabricated by a facile hydrothermal method and diagnosed by multiple advanced analytical techniques. Modelling and optimization of MET decontamination by adopting the central composite design (CCD) revealed that 90 % of MET decontamination can be achieved within 120 min of operating time at the optimized circumstance (photocatalyst dose: 1.17 g/L, MET dose: 33.20 mg/L, ozone concentration: 3.99 mg/min and pH: 8.99). In an attempt to scrutinize the practical application of the CuFe2O4/SiO2/ZnO/xenon/O3 system, roughly 56.18% TOC and 73% COD were removed under the optimized operational circumstances during 120 min of degradation time. According to the radical quenching experiments, hydroxyl radicals (HO•) were the major oxidative species responsible for the elimination of MET. The MET degradation rate maintained at 83% after seven consecutive runs, manifesting the efficiency of CuFe2O4/SiO2/ZnO material in the MET removal. Ultimately, the photocatalytic ozonation mechanism over the CuFe2O4/SiO2/ZnO heterojunction of the fabricated nanocomposites was rationally proposed for MET elimination. In extension, the results drawn in this work indicate that integrating photocatalyst and ozonation processes by the CuFe2O4/SiO2/ZnO material can be applied as an efficient and promising method to eliminate tenacious and non-biodegradable contaminants from aqueous environments.
Collapse
Affiliation(s)
| | - Mohammad Shohani Zadeh
- Department of Safety, Health and Environmental Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| | - Kasra Nateq
- Department of Inspection Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| | - Yousef Dadban Shahamat
- Environmental Health Research Center, Department of Associate Professor, Faculty of Public Health, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Nadeem Ahmad Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Negin Nasseh
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Health Promotion and Education, School of Health, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
2
|
Duan X, Wang Q, Ning Z, Tu S, Li Y, Sun C, Zhao X, Chang L. Fabrication and Characterization of PEG-In2O3 Modified PbO2 Anode for Electrochemical Degradation of Metronidazole. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
Effective removal of nitroimidazole antibiotics in aqueous solution by an aluminum-based metal-organic framework: Performance and mechanistic studies. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Shen J, Cheng F, Chen Y, Li Z, Liu Y, Yuan Y, Zhou P, Liu W, Lai B, Zhang Y. Vanadium trioxide mediated peroxymonosulfate for fast metronidazole oxidation: Stepwise oxidation of vanadium for donating electrons. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Xin J, Pang H, Jin Z, Wu Q, Yu X, Ma H, Wang X, Tan L, Yang G. Two Polyoxometalate-Encapsulated Two-Fold Interpenetrating dia Metal-Organic Frameworks for the Detection, Discrimination, and Degradation of Phenolic Pollutants. Inorg Chem 2022; 61:16055-16063. [PMID: 36173134 DOI: 10.1021/acs.inorgchem.2c02454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenols are widely used for commercial production, while they pose a hazard to the environment and human health. Thus, investigation of convenient and efficient methods for the detection, discrimination, and degradation of phenols becomes particularly important. Herein, two new polyoxometalate (POM)-based compounds, [Co2(btap)4(H2O)4][SiW12O40] (Co-POM) and [Ni2(btap)4(H2O)4][SiW12O40] (Ni-POM) (btap = 3,5-bis(triazol-1-yl)pyridine), are prepared via a hydrothermal synthesis method. The compounds show a fascinating structural feature of a POM-encapsulated twofold interpenetrating dia metal-organic framework. More importantly, besides the novel structures, the compound Co-POM realizes three functions, namely, the simultaneous detection, discrimination, and degradation of phenols. Specifically, Co-POM shows an excellent colorimetric detection performance toward phenol with a detection limit (LOD) ca. 1.32 μM, which is lower than most reported colorimetric detectors for phenol. Also, a new colorimetric sensor system based on Co-POM can discriminate phenol, 4-chlorophenol, and o-cresol with ease. Further, Co-POM exhibits a photocatalytic degradation property for 4-chlorophenol under irradiation of visible light with the highest degradation rate at 62% after irradiation for 5 h. Therefore, this work provides the first example of a POMs-based multifunctional material for achieving the detection, discrimination, and degradation of phenolic pollutants.
Collapse
Affiliation(s)
- Jianjiao Xin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China.,Center of Teaching Experiment and Equipment Management, Qiqihar University, Qiqihar 161006, P.R. China
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| | - Zhongxin Jin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Xiaojing Yu
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| | - Lichao Tan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| |
Collapse
|