Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review.
Adv Colloid Interface Sci 2023;
311:102811. [PMID:
36436436 DOI:
10.1016/j.cis.2022.102811]
[Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
An unsustainable reliance on fossil fuels is the primary cause of the vast majority of greenhouse gas emissions, which in turn lead to climate change. Green hydrogen (H2), which may be generated by electrolyzing water with renewable power sources, is a possible substitute for fossil fuels. On the other hand, the increasing intricacy of hydrogen evolution electrocatalysts that are presently being explored makes it more challenging to integrate catalytic theories, catalytic fabrication procedures, and characterization techniques. This review will initially present the thermodynamics, kinetics, and associated electrical and structural characteristics for HER electrocatalysts before highlighting design approaches for the electrocatalysts. Secondly, an in-depth discussion regarding the rational design, synthesis, mechanistic insight, and performance improvement of electrocatalysts is centered on both the intrinsic and extrinsic influences. Thirdly, the most recent technological advances in electrocatalytic water-splitting approaches are described. Finally, the difficulties and possibilities associated with generating extremely effective HER electrocatalysts for water-splitting applications are discussed.
Collapse