1
|
González D, Pazo-Carballo C, Camú E, Hidalgo-Rosa Y, Zarate X, Escalona N, Schott E. Adsorption properties of M-UiO-66 (M = Zr(IV); Hf(IV) or Ce(IV)) with BDC or PDC linker. Dalton Trans 2024; 53:10486-10498. [PMID: 38840533 DOI: 10.1039/d4dt00941j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The increasing CO2 emissions and their direct impact on climate change due to the greenhouse effect are environmental issues that must be solved as soon as possible. Metal-organic frameworks (MOFs) are one class of crystalline adsorbent materials that are thought to have enormous potential in CO2 capture applications. In this research, the effect of changing the metal center between Zr(IV), Ce(IV), and Hf(IV), and the linker between BDC and PDC has been fully studied. Thus, the six UiO-66 isoreticular derivatives have been synthesized and characterized by FTIR, PXRD, TGA, and N2 adsorption. We also report the BET surface area, CO2 adsorption capacities, kinetics, and the adsorption isosteric heat (Qst) of the UiO-66 derivatives mentioned family. The CO2 adsorption kinetics were evaluated using pseudo-first order, pseudo-second order, Avrami's kinetic models, and the rate-limiting step with Boyd's film diffusion, interparticle diffusion, and intraparticle diffusion models. The isosteric heats of CO2 adsorption using various MOFs are in the range 20-65 kJ mol-1 observing differences in adsorption capacities between 1.15 and 4.72 mmol g-1 at different temperatures due to the electrostatic interactions between CO2 and extra-framework metal ions. The isosteric heat of adsorption calculation in this report, which accounts for the unexpectedly high heat released from Zr-UiO-66-PDC, is finally represented as an increase in the interaction of CO2 with the PDC linker and an increase in Qst with defects.
Collapse
Affiliation(s)
- Diego González
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
| | - Cesar Pazo-Carballo
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Esteban Camú
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Yoan Hidalgo-Rosa
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - Ximena Zarate
- Instituto de Ciencias Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile
| | - Néstor Escalona
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
- Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
| |
Collapse
|
2
|
Ping Y, Zong MY, Zhao Z, Wang CJ, Wang DH. Introducing VO 2+ Group in Phosphomolybdic Acid and Supporting on MOF-808 for Efficient Oxidative Desulfurization. ACS OMEGA 2023; 8:37421-37430. [PMID: 37841163 PMCID: PMC10568600 DOI: 10.1021/acsomega.3c05458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
Herein, by introducing a VO2+ group into the microstructure of phosphomolybdenic acid (PMA) and loading it onto MOF-808, a series of composite catalysts were obtained by reducing the V element with Vitamin C (ascorbic acid). V atoms exist in the secondary structural units of phosphomolybdic acid as [VO(H2O)5]H[PMo12O40]. Surprisingly, the VC-VO-PMA/MOF-808 completely removed DBT and 4,6-DMDBT from the simulated oil in 12 min. The EPR and XPS results verify the electronic structure and valence state of V4+ in the composites. The oxygen vacancy and V4+ generated by VC modification in VC-VO-PMA/MOF-808 have positive effects on the oxidation desulfurization (ODS) activity. Based on the design of the microstructure and electronic structure, this study provides a new paradigm for the development of readily available and efficient ODS catalysts.
Collapse
Affiliation(s)
- Yi Ping
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng-Ya Zong
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhe Zhao
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chuan-Jiao Wang
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Dan-Hong Wang
- TKL of Metal and Molecule
Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Haruna A, Merican ZMA, Musa SG. Remarkable stability and catalytic performance of PW11M@MOF-808 (M=Mn and Cu) nanocomposites for oxidative desulfurization of fuel oil. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
4
|
Guerrero Peña GDJ, Reddy KSK, Varghese AM, Prabhu A, Dabbawala AA, Polychronopoulou K, Baker MA, Anjum D, Das G, Aubry C, Hassan Ali MI, Karanikolos GN, Raj A, Elkadi M. Carbon dioxide adsorbents from flame-made diesel soot nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160140. [PMID: 36379328 DOI: 10.1016/j.scitotenv.2022.160140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Carbon dioxide (CO2) is the top contributor to global warming. On the other, soot particles formed during fuel combustion and released into the atmosphere are harmful and also contribute to global warming. It would therefore be highly advantageous to capture soot and make use of it as a feedstock to synthesize carbon-based materials for applications such as carbon dioxide adsorption. In this work, flame-made diesel soot nanoparticles were used to produce a variety of activated carbons by combined oxidative treatment with hydrogen peroxide (H2O2) and potassium hydroxide (KOH), and their performance towards CO2 adsorption was evaluated. The effect of the chemical activation of soot with H2O2 for different reaction times and with KOH on the physicochemical properties of the activated carbons was investigated and compared to fresh soot. Interestingly, hollow aggregates of carbonaceous nanoparticles of a high interplanar distance, reduced polycyclic aromatic hydrocarbons (PAH) size, shorter PAH stacks, mesoporous structure, and a high content of oxygen functionalities along with other structural defects in PAHs were obtained in the synthesized activated carbons. Among the various analysis techniques employed, Raman spectroscopy indicated that the ID/IG ratio in soot decreased after simultaneous chemical treatment, though it did not indicate any enhancement in the graphitic character since the carbonyl and carboxylic containing PAHs and monovacancies (which cause defects in PAHs) also contribute to the increase in the intensity of the graphitic band. The activated carbons possessed promising CO2 adsorption capacities, adsorption kinetics and CO2/N2 selectivity. For example, one of the activated carbons, following H2O2 treatment for 9 h and a subsequent KOH activation, exhibited a CO2 adsorption capacity of 1.78 mmol/g at 1 bar and 25 °C, representing an increase of 161 % in capacity as compared to fresh soot. Hollow aggregates of carbonaceous nanoparticles consisting of shorter PAHs with a larger number of defects led to enhanced CO2 adsorption rate and CO2/N2 selectivity on activated carbons.
Collapse
Affiliation(s)
| | - K Suresh Kumar Reddy
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Anish Mathai Varghese
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Azhagapillai Prabhu
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Aasif A Dabbawala
- Department of Mechanical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Kyriaki Polychronopoulou
- Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Mechanical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Mark A Baker
- The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 4DL, UK
| | - Dalaver Anjum
- Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Physics, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Gobind Das
- Department of Physics, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Cyril Aubry
- Electron Microscopy Core Labs, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Mohamed I Hassan Ali
- Department of Mechanical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Georgios N Karanikolos
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - Abhijeet Raj
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, India
| | - Mirella Elkadi
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Haruna A, Chong FK, Ho YC, Merican ZMA. Preparation and modification methods of defective titanium dioxide-based nanoparticles for photocatalytic wastewater treatment-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70706-70745. [PMID: 36044146 DOI: 10.1007/s11356-022-22749-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The rapid population growth and industrial expansion worldwide have created serious water contamination concerns. To curb the pollution issue, it has become imperative to use a versatile material for the treatment. Titanium dioxide (TiO2) has been recognized as the most-studied nanoparticle in various fields of science and engineering due to its availability, low cost, efficiency, and other fascinating properties with a wide range of applications in modern technology. Recent studies revealed the photocatalytic activity of the material for the treatment of industrial effluents to promote environmental sustainability. With the wide band gap energy of 3.2 eV, TiO2 can be activated under UV light; thus, many strategies have been proposed to extend its photoabsorption to the visible light region. In what follows, this has generated increasing attention to study its characteristics and structural modifications in different forms for photocatalytic applications. The present review provides an insight into the understanding of the synthesis methods of TiO2, the current progress in the treatment techniques for the degradation of wide environmental pollutants employing modified TiO2 nanoparticles, and the factors affecting its photocatalytic activities. Further, recent developments in using titania for practical applications, the approach for designing novel nanomaterials, and the prospects and opportunities in this exciting area have been discussed.
Collapse
Affiliation(s)
- Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria.
- Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Fai-Kait Chong
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre for Urban Resource Sustainability, Institute for Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Institute of Contaminant Management for Oil & Gas, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|