1
|
Naaz S, Chatterjee T, Roy S, Dutta B, Wabaidur SM, Siddiqui MR, Wahid M, Mafiz Alam S, Hedayetullah Mir M. Diamondoid Ni(II) Coordination Polymer as an Electrocatalyst for Hydrogen and Oxygen Evolution Reactions and Overall Water Splitting. Chem Asian J 2024; 19:e202400218. [PMID: 38634303 DOI: 10.1002/asia.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
We have successfully synthesized a new Ni(II)-based coordination polymer (CP) [Ni2(cis-1,4-chdc)2(4,4'-bpy)3(H2O)2] (1); (cis-1,4- H2chdc=cis-1,4-cyclohexanedicarboxylic acid and 4,4'-bpy=4,4'-bipyridine) employing slow diffusion method in a single pot technique. The connectivity of Ni(II) ions and bridging cis-1,4-chdc ligand gives rise to a three-dimensional (3D) framework with 2-fold interpenetrated diamondoid topology. Interestingly, the synthesized CP acts as efficient catalyst for electrocatalytic water splitting. The water oxidation activity of compound 1 exhibits Tafel slope equivalent to 361.48 mV.dec-1 for hydrogen evolution reaction (HER) and 353.53 mV.dec-1 for oxygen evolution reaction (OER) in an alkaline medium while almost similar values of Tafel slope for HER and OER equivalent to 287.33 mV.dec-1 and 289.93 mV.dec-1 respectively in acidic medium. Thus, the compound 1 has excellent efficacy in catalyzing HER and OER in acidic as well as alkaline medium, which is ascribed to its distinctive 3D architecture.
Collapse
Affiliation(s)
- Sanobar Naaz
- Department of Chemistry, Aliah University, New Town, 700 160, Kolkata, India
| | - Taposi Chatterjee
- Department of Chemistry, Aliah University, New Town, 700 160, Kolkata, India
- Department of Basic Science & Humanities, Techno International, New Town, 700 156, Kolkata, India
| | - Saswati Roy
- Department of Geography, Sarsuna College, 700 060, Kolkata, India
| | - Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, 700 160, Kolkata, India
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, 606-8501, Kyoto, Japan
| | | | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Malik Wahid
- Department of Chemistry, Central University of Kashmir, 191 201, Ganderbal, Jammu and Kashmir, India
| | - Seikh Mafiz Alam
- Department of Chemistry, Aliah University, New Town, 700 160, Kolkata, India
| | | |
Collapse
|
2
|
Khan MS, Li Y, Li DS, Qiu J, Xu X, Yang HY. A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. NANOSCALE ADVANCES 2023; 5:6318-6348. [PMID: 38045530 PMCID: PMC10690739 DOI: 10.1039/d3na00627a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 12/05/2023]
Abstract
Water plays a vital role in all aspects of life. Recently, water pollution has increased exponentially due to various organic and inorganic pollutants. Organic pollutants are hard to degrade; therefore, cost-effective and sustainable approaches are needed to degrade these pollutants. Organic dyes are the major source of organic pollutants from coloring industries. The photoactive metal-organic frameworks (MOFs) offer an ultimate strategy for constructing photocatalysts to degrade pollutants present in wastewater. Therefore, tuning the metal ions/clusters and organic ligands for the better photocatalytic activity of MOFs is a tremendous approach for wastewater treatment. This review comprehensively reports various MOFs and their composites, especially POM-based MOF composites, for the enhanced photocatalytic degradation of organic pollutants in the aqueous phase. A brief discussion on various theoretical aspects such as density functional theory (DFT) and machine learning (ML) related to MOF and MOF composite-based photocatalysts has been presented. Thus, this article may eventually pave the way for applying different structural features to modulate novel porous materials for enhanced photodegradation properties toward organic pollutants.
Collapse
Affiliation(s)
- M Shahnawaz Khan
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Yixiang Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang 443002 P. R. China
| | - Jianbei Qiu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Xuhui Xu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| |
Collapse
|
3
|
Khan MS, Leong ZY, Li DS, Qiu J, Xu X, Yang HY. A mini review on metal-organic framework-based electrode materials for capacitive deionization. NANOSCALE 2023; 15:15929-15949. [PMID: 37772477 DOI: 10.1039/d3nr03993e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Capacitive deionization (CDI) is an electrochemical method of extracting ions from solution at potentials below electrolysis. It has various applications ranging from water remediation and desalination to heavy metal removal and selective resource recovery. A CDI device applies an electrical charge across two porous electrodes to attract and remove ions without producing waste products. It is generally considered environmentally friendly and promising for sustainability, yet ion removal efficiency still falls short of more established filtration methods. Commercially available activated carbon is typically used for CDI, and its ion adsorption capacity is low at approximately 20-30 mg g-1. Recently, much interest has been in the highly porous and well-structured family of materials known as metal-organic frameworks (MOFs). Most MOFs are poor conductors of electricity and cannot be directly used to make electrodes. A common workaround is to pyrolyze the MOF to convert its organic components to carbon while maintaining its underlying microstructure. However, most MOF-derived materials only retain partial microstructure after pyrolysis and cannot inherit the robust porosity of the parent MOFs. This review provides a systematic breakdown of structure-performance relationships between a MOF-derived material and its CDI performance based on recent works. This review also serves as a starting point for researchers interested in developing MOF-derived materials for CDI applications.
Collapse
Affiliation(s)
- M Shahnawaz Khan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Zhi Yi Leong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Jianbei Qiu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Xuhui Xu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| |
Collapse
|
4
|
Kamal S, Khalid M, Khan MS, Shahid M, Ahmad M. A bifunctionalised Pb-based MOF for iodine capture and dye removal. Dalton Trans 2023; 52:4501-4516. [PMID: 36919795 DOI: 10.1039/d3dt00237c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
A 2-dimensional Pb(II) metal-organic framework, [Pb(bdc)0.5(py-Phen)NO3]n (SM-3), was synthesized under solvothermal conditions using a mixed ligand approach. SM-3 was assembled using dinuclear SBUs [Pb2(COO)2]2-, an oxygen donor H2bdc = 1,4-benzene dicarboxylic acid, and nitrogen donor py-Phen = pyrazino[2,3-f][1,10]-phenanthroline linkers. SM-3 was characterized by elemental analysis, FT-IR, powder-X-ray diffraction, thermal gravimetric analysis, SEM, EDS, TEM, and single-crystal X-ray diffraction techniques. Crystallographic studies confirmed that SM-3 displays a 2D layered structure with unique anagostic (Pb⋯H) interactions. Interestingly, the presence of abundant π-electron-rich rings embellished with free -N donor sites in the framework makes SM-3 an excellent adsorbent that exhibits adsorption performance for iodine and dyes. The experimental results show that SM-3 reversibly adsorbs radioactive iodine in the solution and vapor phases and exhibits selective adsorption performance for hazardous cationic dyes, namely, methylene blue (MB) and rhodamine-B (Rh-B), from aqueous solution. Moreover, the possible mechanism of iodine and dye adsorption was also discussed in detail. Thus, this work is remarkable for coordination chemists to engineer layered MOFs for adsorption purposes and expands their potential characteristics by converting them into 2D MOF nanosheets to further enhance the adsorption of hazardous pollutants for environment protection.
Collapse
Affiliation(s)
- Samrah Kamal
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Mohd Khalid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - M Shahnawaz Khan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Musheer Ahmad
- ZHCET Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
5
|
A 2D Porous Zinc-Organic Framework Platform for Loading of 5-Fluorouracil. INORGANICS 2022. [DOI: 10.3390/inorganics10110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A hydrostable 2D Zn-based MOF, {[Zn(5-PIA)(imbm)]·2H2O}n (1) (5-H2PIA = 5-propoxy-isophthalic acid, imbm = 1,4-di(1H-imidazol-1-yl)benzene), was synthesized and structurally characterized. Complex 1 shows good water and thermal stability based on the TGA and PXRD analyses and displays a 2D framework with 1D channels of 4.8 × 13.8 and 10.0 × 8.3 Å2 along the a axis. The 5-fluorouracil (5-FU) payload in activated complex 1 (complex 1a) is 19.3 wt%, and the cumulative release value of 5-FU at 120 h was about 70.04% in PBS (pH 7.4) at 310 K. In vitro MTT assays did not reveal any cytotoxic effect of NIH-3T3 and HEK-293 cells when the concentration of 1 was below 500 μg/mL and 5 μg/mL, respectively. No morphological abnormalities were observed on zebrafish exposed to complex 1.
Collapse
|
6
|
Novel insights into Graphene oxide-based adsorbents for remediation of hazardous pollutants from aqueous solutions: A comprehensive review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|