1
|
Creary S, Chung MG, Villella AD, Lo WD. Stroke Prevention and Treatment for Youth with Sickle Cell Anemia: Current Practice and Challenges and Promises for the Future. Curr Neurol Neurosci Rep 2024; 24:537-546. [PMID: 39304580 PMCID: PMC11455693 DOI: 10.1007/s11910-024-01372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE OF REVIEW Sickle cell anemia (SCA) is an autosomal recessive inherited hemoglobinopathy that results in a high risk of stroke. SCA primarily affects an underserved minority population of children who are frequently not receiving effective, multi-disciplinary, preventative care. This article reviews primary and secondary stroke prevention and treatment for children with SCA for the general adult and pediatric neurologist, who may play an important role in providing critical neurologic evaluation and care to these children. RECENT FINDINGS Primary stroke prevention is efficacious at reducing ischemic stroke risk, but it is not consistently implemented into clinical practice in the United States, resulting in these children remaining at high risk. Acute symptomatic stroke management requires neurology involvement and emergent transfusion to limit ischemia. Furthermore, while chronic transfusion therapy is a proven secondary preventative modality for those with prior symptomatic or silent cerebral infarcts, it carries significant burden. Newer therapies (e.g., stem cell therapies and voxelotor) deserve further study as they may hold promise in reducing stroke risk and treatment burden. Effective primary and secondary stroke prevention and treatment remain a challenge. Informing and engaging neurology providers to recognize and provide critical neurologic evaluation and treatment has potential to close care gaps.
Collapse
Affiliation(s)
- Susan Creary
- Division of Hematology/Oncology/BMT, Dept of Pediatrics, The Ohio State University and Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Melissa G Chung
- Division of Neurology, Dept of Pediatrics, The Ohio State University and Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- Division of Critical Care, Dept of Pediatrics, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Anthony D Villella
- Division of Hematology/Oncology/BMT, Dept of Pediatrics, The Ohio State University and Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Warren D Lo
- Division of Neurology, Dept of Pediatrics, The Ohio State University and Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| |
Collapse
|
2
|
de Castro JNP, da Silva Costa SM, Camargo ACL, Ito MT, de Souza BB, de Haidar E Bertozzo V, Rodrigues TAR, Lanaro C, de Albuquerque DM, Saez RC, Saad STO, Ozelo MC, Cendes F, Costa FF, de Melo MB. Comparative transcriptomic analysis of circulating endothelial cells in sickle cell stroke. Ann Hematol 2024; 103:1167-1179. [PMID: 38386032 DOI: 10.1007/s00277-024-05655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Ischemic stroke (IS) is one of the most impairing complications of sickle cell anemia (SCA), responsible for 20% of mortality in patients. Rheological alterations, adhesive properties of sickle reticulocytes, leukocyte adhesion, inflammation and endothelial dysfunction are related to the vasculopathy observed prior to ischemic events. The role of the vascular endothelium in this complex cascade of mechanisms is emphasized, as well as in the process of ischemia-induced repair and neovascularization. The aim of the present study was to perform a comparative transcriptomic analysis of endothelial colony-forming cells (ECFCs) from SCA patients with and without IS. Next, to gain further insights of the biological relevance of differentially expressed genes (DEGs), functional enrichment analysis, protein-protein interaction network (PPI) construction and in silico prediction of regulatory factors were performed. Among the 2469 DEGs, genes related to cell proliferation (AKT1, E2F1, CDCA5, EGFL7), migration (AKT1, HRAS), angiogenesis (AKT1, EGFL7) and defense response pathways (HRAS, IRF3, TGFB1), important endothelial cell molecular mechanisms in post ischemia repair were identified. Despite the severity of IS in SCA, widely accepted molecular targets are still lacking, especially related to stroke outcome. The comparative analysis of the gene expression profile of ECFCs from IS patients versus controls seems to indicate that there is a persistent angiogenic process even after a long time this complication has occurred. Thus, this is an original study which may lead to new insights into the molecular basis of SCA stroke and contribute to a better understanding of the role of endothelial cells in stroke recovery.
Collapse
Affiliation(s)
- Júlia Nicoliello Pereira de Castro
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Sueli Matilde da Silva Costa
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Ana Carolina Lima Camargo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Mirta Tomie Ito
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Bruno Batista de Souza
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Victor de Haidar E Bertozzo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Thiago Adalton Rosa Rodrigues
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Carolina Lanaro
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | | | - Roberta Casagrande Saez
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Margareth Castro Ozelo
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Mônica Barbosa de Melo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil.
| |
Collapse
|
3
|
Alcolumbre Tobelem FL, de Andrade GALR, Paschoal JKSF, de Oliveira Cardoso MDS, Sarmento Trindade SM, Paschoal EHA, Paschoal-Jr FM, Bor-Seng-Shu E. Cerebral Vasculopathy in Children With Sickle Cell Disease in an Amazonian Population. J Child Neurol 2022; 37:8830738221100088. [PMID: 35611504 DOI: 10.1177/08830738221100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction: Sickle cell disease is the most prevalent hereditary disease in the country. The aim of this study was to use transcranial Doppler as a screening method for identifying cerebral vasculopathy in children with sickle cell disease. Methods: An epidemiologic, descriptive, and cross-sectional study was conducted. Patients aged 2-16 years with sickle cell disease and followed at a neurology referral service between January 2014 and March 2020 underwent transcranial Doppler and complementary examinations to screen for cerebral vasculopathy. Results: Screening and confirmatory examinations diagnosed 14 of 164 patients (8.5%) with cerebral vasculopathy. Regarding stroke risk, as measured by cerebral blood flow velocity, 2 of 14 patients (14.2%) were classified as conditional risk (170-199 cm/s) and 12 of 14 (85.7%) as high risk of stroke. Conclusion: Complementary examinations should be performed in all patients with changes on transcranial Doppler to confirm cerebral vasculopathy. Further studies, particularly genetic, are needed to better understand the relationship between sickle cell disease and cerebral vasculopathy.
Collapse
Affiliation(s)
| | | | - Joelma Karin Sagica Fernandes Paschoal
- Amazônia Neurovascular Research Group, Federal University of Pará, Belém, Brazil
- Department of Neurology, Federal University of Pará Medical School, Belém, Brazil
| | - Maria do Socorro de Oliveira Cardoso
- Department of Hematology, Federal University of Pará Medical School, Belém, Brazil
- Foundation Center of Hematology and Hemotherapy of Pará (HEMOPA), Belém, Brazil
| | | | - Eric Homero Albuquerque Paschoal
- Amazônia Neurovascular Research Group, Federal University of Pará, Belém, Brazil
- Department of Neurosurgery, Federal University of Pará, Belém, Brazil
| | - Fernando M Paschoal-Jr
- Amazônia Neurovascular Research Group, Federal University of Pará, Belém, Brazil
- Department of Neurology, Federal University of Pará Medical School, Belém, Brazil
| | - Edson Bor-Seng-Shu
- Laboratory for Neurosonology and Cerebral Hemodynamics, Division of Neurological Surgery, Hospital das Clinicas, São Paulo University Medical School, São Paulo, Brazil
| |
Collapse
|
4
|
Robertson RL, Palasis S, Rivkin MJ, Pruthi S, Bartel TB, Desai NK, Kadom N, Kulkarni AV, Lam HFS, Maheshwari M, Milla SS, Mirsky DM, Myseros JS, Partap S, Radhakrishnan R, Soares BP, Trout AT, Udayasankar UK, Whitehead MT, Karmazyn B. ACR Appropriateness Criteria® Cerebrovascular Disease-Child. J Am Coll Radiol 2020; 17:S36-S54. [PMID: 32370977 DOI: 10.1016/j.jacr.2020.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 10/24/2022]
Abstract
Stroke is an uncommon but an important and under-recognized cause of morbidity and mortality in children. Strokes may be due to either brain ischemia or intracranial hemorrhage. Common symptoms of pediatric acute stroke include headache, vomiting, focal weakness, numbness, visual disturbance, seizures, and altered consciousness. Most children presenting with an acute neurologic deficit do not have an acute stroke, but have symptoms due to stroke mimics which include complicated migraine, seizures with postictal paralysis, and Bell palsy. Because of frequency of stroke mimics, in children and the common lack of specificity in symptoms, the diagnosis of a true stroke may be delayed. There are a relatively large number of potential causes of stroke mimic and true stroke. Consequently, imaging plays a critical role in the assessment of children with possible stroke and especially in children who present with acute onset of stroke symptoms. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
| | - Susan Palasis
- Panel Chair, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Michael J Rivkin
- Boston Children's Hospital, Boston, Massachusetts; American Academy of Neurology
| | - Sumit Pruthi
- Panel Vice Chair, Vanderbilt Children's Hospital, Nashville, Tennessee
| | | | | | - Nadja Kadom
- Emory University and Children's of Atlanta (Egleston), Atlanta, Georgia
| | - Abhaya V Kulkarni
- Hospital for Sick Children, Toronto, Ontario, Canada; Neurosurgery expert
| | - H F Samuel Lam
- Sutter Medical Center, Sacramento, California; American College of Emergency Physicians
| | | | - Sarah S Milla
- Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | | | - John S Myseros
- Children's National Health System, Washington, District of Columbia; Neurosurgery expert
| | - Sonia Partap
- Stanford University, Stanford, California; American Academy of Pediatrics
| | | | - Bruno P Soares
- The University of Vermont Medical Center, Burlington, Vermont
| | - Andrew T Trout
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | - Boaz Karmazyn
- Specialty Chair, Riley Hospital for Children Indiana University, Indianapolis, Indiana
| |
Collapse
|
5
|
Satoh A, Hayashi-Nishino M, Shakuno T, Masuda J, Koreishi M, Murakami R, Nakamura Y, Nakamura T, Abe-Kanoh N, Honjo Y, Malsam J, Yu S, Nishino K. The Golgin Protein Giantin Regulates Interconnections Between Golgi Stacks. Front Cell Dev Biol 2019; 7:160. [PMID: 31544102 PMCID: PMC6732663 DOI: 10.3389/fcell.2019.00160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Golgins are a family of Golgi-localized long coiled-coil proteins. The major golgin function is thought to be the tethering of vesicles, membranes, and cytoskeletal elements to the Golgi. We previously showed that knockdown of one of the longest golgins, Giantin, altered the glycosylation patterns of cell surfaces and the kinetics of cargo transport, suggesting that Giantin maintains correct glycosylation through slowing down transport within the Golgi. Giantin knockdown also altered the sizes and numbers of mini Golgi stacks generated by microtubule de-polymerization, suggesting that it maintains the independence of individual Golgi stacks. Therefore, it is presumed that Golgi stacks lose their independence following Giantin knockdown, allowing easier and possibly increased transport among stacks and abnormal glycosylation. To gain structural insights into the independence of Golgi stacks, we herein performed electron tomography and 3D modeling of Golgi stacks in Giantin knockdown cells. Compared with control cells, Giantin-knockdown cells had fewer and smaller fenestrae within each cisterna. This was supported by data showing that the diffusion rate of Golgi membrane proteins is faster in Giantin-knockdown Golgi, indicating that Giantin knockdown structurally and functionally increases connectivity among Golgi cisternae and stacks. This increased connectivity suggests that contrary to the cis-golgin tether model, Giantin instead inhibits the tether and fusion of nearby Golgi cisternae and stacks, resulting in transport difficulties between stacks that may enable the correct glycosylation of proteins and lipids passing through the Golgi.
Collapse
Affiliation(s)
- Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | | | - Takuto Shakuno
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Junko Masuda
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Mayuko Koreishi
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Runa Murakami
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Naomi Abe-Kanoh
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.,Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Graduate School Tokushima University, Tokushima, Japan
| | - Yasuko Honjo
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Joerg Malsam
- Center for Biochemistry (BZH), Heidelberg University, Heidelberg, Germany
| | - Sidney Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Kunihiko Nishino
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|