1
|
Yang Z, Tong Y, Duan D, Xin W, Li H, Yi J, He X, Bao G. A novel 3D-printed educational model for the training of laparoscopic bile duct Exploration:a pilot study for beginning trainees. Heliyon 2024; 10:e36689. [PMID: 39263176 PMCID: PMC11388737 DOI: 10.1016/j.heliyon.2024.e36689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Background Laparoscopic common bile duct exploration (LCBDE) is a minimally invasive procedure for the removal of bile duct stones that is often performed by experienced hepatobiliary surgeons; beginners do not easily master this approach. Aim To investigate the effectiveness and practicality of a three-dimensional printed (3DP) anatomical model based on radiographic images in the training of LCBDE techniques and formulate standardized educational workflows. Methods Colored LCBDE training models were produced using 3DP technology. Twenty standardized training trainees were randomly divided into two groups: a 3DP model training group and a traditional laparoscopic simulation training group. Both groups received the same number of teaching hours. After a 4-weeks training course, the trainees' subjective and objective progress in basic knowledge and manipulations were evaluated and compared. Results Compared with traditional laparoscopic simulation, 3DP model simulation training is of great significance in improving trainers' understanding of surgical procedures and cooperation during the operation. Trainees with 3DP models training demonstrated a significant improvement in their understanding of the key points of surgery (χ2 = 6.139, p = 0.013) and skills scores, especially in core procedural steps operation. More importantly, the trainees showed higher levels of satisfaction and self-confidence while assisting in the surgery. Conclusion With the development of 3DP models, improvements in the learning effect for theoretical understanding and practical skills were significant. The present study is the initial educational experience with 3DP models to facilitate the operational capabilities of the trainees for LCBDE.
Collapse
Affiliation(s)
- Zhenyu Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Yao Tong
- Department of Anesthesia and Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Dongfeng Duan
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Wei Xin
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Haoran Li
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Jiangpu Yi
- 3D Printing Research Center of Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xianli He
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Guoqiang Bao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Khan MA, Khan N, Ullah M, Hamayun S, Makhmudov NI, Mbbs R, Safdar M, Bibi A, Wahab A, Naeem M, Hasan N. 3D printing technology and its revolutionary role in stent implementation in cardiovascular disease. Curr Probl Cardiol 2024; 49:102568. [PMID: 38599562 DOI: 10.1016/j.cpcardiol.2024.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Cardiovascular disease (CVD), exemplified by coronary artery disease (CAD), is a global health concern, escalating in prevalence and burden. The etiology of CAD is intricate, involving different risk factors. CVD remains a significant cause of mortality, driving the need for innovative interventions like percutaneous coronary intervention and vascular stents. These stents aim to minimize restenosis, thrombosis, and neointimal hyperplasia while providing mechanical support. Notably, the challenges of achieving ideal stent characteristics persist. An emerging avenue to address this involves enhancing the mechanical performance of polymeric bioresorbable stents using additive manufacturing techniques And Three-dimensional (3D) printing, encompassing various manufacturing technologies, has transcended its initial concept to become a tangible reality in the medical field. The technology's evolution presents a significant opportunity for pharmaceutical and medical industries, enabling the creation of targeted drugs and swift production of medical implants. It revolutionizes medical procedures, transforming the strategies of doctors and surgeons. Patient-specific 3D-printed anatomical models are now pivotal in precision medicine and personalized treatment approaches. Despite its ongoing development, additive manufacturing in healthcare is already integrated into various medical applications, offering substantial benefits to a sector under pressure for performance and cost reduction. In this review primarily emphasizes stent technology, different types of stents, highlighting its application with some potential complications. Here we also address their benefits, potential issues, effectiveness, indications, and contraindications. In future it can potentially reduce complications and help in improving patients' outcomes. 3DP technology offers the promise to customize solutions for complex CVD conditions and help or fostering a new era of precision medicine in cardiology.
Collapse
Affiliation(s)
- Muhammad Amir Khan
- Department of Foreign Medical Education, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Niyamat Khan
- Department of Foreign Medical Education, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 Beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Punjab 04485, Pakistan
| | - Nurullo Ismoilovich Makhmudov
- Department of Hospital Therapy, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Raziya Mbbs
- Department of Foreign Medical Education, Fergana Medical Institute of Public Health, 2A Yangi Turon Street, Fergana 150100, Uzbekistan
| | - Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Ayisha Bibi
- Department of Pharmacy, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Kohat 26000, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Kohat 26000, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar 90245, Republic of Indonesia.
| |
Collapse
|
3
|
Ma Y, Deng B, He R, Huang P. Advancements of 3D bioprinting in regenerative medicine: Exploring cell sources for organ fabrication. Heliyon 2024; 10:e24593. [PMID: 38318070 PMCID: PMC10838744 DOI: 10.1016/j.heliyon.2024.e24593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
3D bioprinting has unlocked new possibilities for generating complex and functional tissues and organs. However, one of the greatest challenges lies in selecting the appropriate seed cells for constructing fully functional 3D artificial organs. Currently, there are no cell sources available that can fulfill all requirements of 3D bioprinting technologies, and each cell source possesses unique characteristics suitable for specific applications. In this review, we explore the impact of different 3D bioprinting technologies and bioink materials on seed cells, providing a comprehensive overview of the current landscape of cell sources that have been used or hold potential in 3D bioprinting. We also summarized key points to guide the selection of seed cells for 3D bioprinting. Moreover, we offer insights into the prospects of seed cell sources in 3D bioprinted organs, highlighting their potential to revolutionize the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Runbang He
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
4
|
Christou CD, Vasileiadou S, Sotiroudis G, Tsoulfas G. Three-Dimensional Printing and Bioprinting in Renal Transplantation and Regenerative Medicine: Current Perspectives. J Clin Med 2023; 12:6520. [PMID: 37892658 PMCID: PMC10607284 DOI: 10.3390/jcm12206520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
For patients with end-stage kidney disease (ESKD), renal transplantation is the treatment of choice, constituting the most common solid organ transplantation. This study aims to provide a comprehensive review regarding the application of three-dimensional (3D) printing and bioprinting in renal transplantation and regenerative medicine. Specifically, we present studies where 3D-printed models were used in the training of surgeons through renal transplantation simulations, in patient education where patients acquire a higher understanding of their disease and the proposed operation, in the preoperative planning to facilitate decision-making, and in fabricating customized, tools and devices. Three-dimensional-printed models could transform how surgeons train by providing surgical rehearsal platforms across all surgical specialties, enabling training with tissue realism and anatomic precision. The use of 3D-printed models in renal transplantations has shown a positive impact on surgical outcomes, including the duration of the operation and the intraoperative blood loss. Regarding 3D bioprinting, the technique has shown promising results, especially in the field of microfluidic devices, with the development of tissue demonstrating proximal tubules, glomerulus, and tubuloinerstitium function, and in renal organoid development. Such models can be applied for renal disease modeling, drug development, and renal regenerative medicine.
Collapse
Affiliation(s)
- Chrysanthos D. Christou
- Department of Transplantation Surgery, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (S.V.); (G.S.); (G.T.)
| | | | | | | |
Collapse
|
5
|
Bao G, Yang P, Yi J, Peng S, Liang J, Li Y, Guo D, Li H, Ma K, Yang Z. Full-sized realistic 3D printed models of liver and tumour anatomy: a useful tool for the clinical medicine education of beginning trainees. BMC MEDICAL EDUCATION 2023; 23:574. [PMID: 37582729 PMCID: PMC10428657 DOI: 10.1186/s12909-023-04535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Simulation-based medical education (SBME) and three-dimensional printed (3DP) models are increasingly used in continuing medical education and clinical training. However, our understanding of their role and value in improving trainees' understanding of the anatomical and surgical procedures associated with liver surgery remains limited. Furthermore, gender bias is also a potential factor in the evaluation of medical education. Therefore, the aim of this study was to evaluate the educational benefits trainees receive from the use of novel 3DP liver models while considering trainees' experience and gender. METHODS Full-sized 3DP liver models were developed and printed using transparent material based on anonymous CT scans. We used printed 3D models and conventional 2D CT scans of the liver to investigate thirty trainees with various levels of experience and different genders in the context of both small group teaching and formative assessment. We adopted a mixed methods approach involving both questionnaires and focus groups to collect the views of different trainees and monitors to assess trainees' educational benefits and perceptions after progressing through different training programs. We used Objective Structured Clinical Examination (OSCE) and Likert scales to support thematic analysis of the responses to the questionnaires by trainees and monitors, respectively. Descriptive analyses were conducted using SPSS statistical software version 21.0. RESULTS Overall, a 3DP model of the liver is of great significance for improving trainees' understanding of surgical procedures and cooperation during operation. After viewing the personalized full-sized 3DP liver model, all trainees at the various levels exhibited significant improvements in their understanding of the key points of surgery (p < 0.05), especially regarding the planned surgical procedure and key details of the surgical procedures. More importantly, the trainees exhibited higher levels of satisfaction and self-confidence during the operation regardless of gender. However, with regard to gender, the results showed that the improvement of male trainees after training with the 3DP liver model was more significant than that of female trainees in understanding and cooperation during the surgical procedure, while no such trend was found with regard to their understanding of the base knowledge. CONCLUSION Trainees and monitors agreed that the use of 3DP liver models was acceptable. The improvement of the learning effect for practical skills and theoretical understanding after training with the 3DP liver models was significant. This study also indicated that training with personalized 3DP liver models can improve all trainees' presurgical understanding of liver tumours and surgery and males show more advantage in understanding and cooperation during the surgical procedure as compared to females. Full-sized realistic 3DP models of the liver are an effective auxiliary teaching tool for SBME teaching in Chinese continuing medical education.
Collapse
Affiliation(s)
- Guoqiang Bao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Ping Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Jiangpu Yi
- 3D Printing Research Center of Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Shujia Peng
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Jiahe Liang
- 3D Printing Research Center of Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yajie Li
- Xi 'an Ma Ke Medical Technology Ltd, Room 21516, Block C, Chaoyang International Plaza, Xi'an, Shaanxi, China
| | - Dian Guo
- Xi 'an Ma Ke Medical Technology Ltd, Room 21516, Block C, Chaoyang International Plaza, Xi'an, Shaanxi, China
| | - Haoran Li
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Kejun Ma
- Xi 'an Ma Ke Medical Technology Ltd, Room 21516, Block C, Chaoyang International Plaza, Xi'an, Shaanxi, China
| | - Zhenyu Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
6
|
Xie Y, Wu G, Liang Y, Fan G. Three-Dimensional Physical Model in Urologic Cancer. Front Surg 2022; 9:757337. [PMID: 35693309 PMCID: PMC9174564 DOI: 10.3389/fsurg.2022.757337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) printing, as an evolving technology, enables the creation of patient-specific physical models with high precision; thus, it is widely used in various clinical practices, especially urologic cancer. There is an increasing need to clarify the contribution of 3D printing in the practice of urological cancer in order to identify various applications and improve understanding its benefits and challenges in clinical practice. Researches have focused on the use of 3D-printed models in patient and trainee education, surgical simulation, as well as surgical planning and guidance. This mini review will present the most recently published studies on the topic, including the applications of 3D-printed models, feasibility of performed procedures, possible simulated organs, application outcomes, and challenges involved in urologic cancer, to provide potential directions for future research.
Collapse
Affiliation(s)
- Yu Xie
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and the Clinical Research Center for Renal Tumor in Hunan Province, Changsha, China
- The Clinical Research Center for Renal Tumor in Hunan Province, The Hunan Cancer Hospital and the Hunan Provincial Science and Technology Department, Central South University, Changsha, China
| | - Guanlin Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Liang
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and the Clinical Research Center for Renal Tumor in Hunan Province, Changsha, China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Gang Fan
| |
Collapse
|
7
|
Cornejo J, Cornejo-Aguilar JA, Vargas M, Helguero CG, Milanezi de Andrade R, Torres-Montoya S, Asensio-Salazar J, Rivero Calle A, Martínez Santos J, Damon A, Quiñones-Hinojosa A, Quintero-Consuegra MD, Umaña JP, Gallo-Bernal S, Briceño M, Tripodi P, Sebastian R, Perales-Villarroel P, De la Cruz-Ku G, Mckenzie T, Arruarana VS, Ji J, Zuluaga L, Haehn DA, Paoli A, Villa JC, Martinez R, Gonzalez C, Grossmann RJ, Escalona G, Cinelli I, Russomano T. Anatomical Engineering and 3D Printing for Surgery and Medical Devices: International Review and Future Exponential Innovations. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6797745. [PMID: 35372574 PMCID: PMC8970887 DOI: 10.1155/2022/6797745] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/26/2022]
Abstract
Three-dimensional printing (3DP) has recently gained importance in the medical industry, especially in surgical specialties. It uses different techniques and materials based on patients' needs, which allows bioprofessionals to design and develop unique pieces using medical imaging provided by computed tomography (CT) and magnetic resonance imaging (MRI). Therefore, the Department of Biology and Medicine and the Department of Physics and Engineering, at the Bioastronautics and Space Mechatronics Research Group, have managed and supervised an international cooperation study, in order to present a general review of the innovative surgical applications, focused on anatomical systems, such as the nervous and craniofacial system, cardiovascular system, digestive system, genitourinary system, and musculoskeletal system. Finally, the integration with augmented, mixed, virtual reality is analyzed to show the advantages of personalized treatments, taking into account the improvements for preoperative, intraoperative planning, and medical training. Also, this article explores the creation of devices and tools for space surgery to get better outcomes under changing gravity conditions.
Collapse
Affiliation(s)
- José Cornejo
- Facultad de Ingeniería, Universidad San Ignacio de Loyola, La Molina, Lima 15024, Peru
- Department of Medicine and Biology & Department of Physics and Engineering, Bioastronautics and Space Mechatronics Research Group, Lima 15024, Peru
| | | | | | | | - Rafhael Milanezi de Andrade
- Robotics and Biomechanics Laboratory, Department of Mechanical Engineering, Universidade Federal do Espírito Santo, Brazil
| | | | | | - Alvaro Rivero Calle
- Department of Oral and Maxillofacial Surgery, Hospital 12 de Octubre, Madrid, Spain
| | - Jaime Martínez Santos
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Aaron Damon
- Department of Neurosurgery, Mayo Clinic, FL, USA
| | | | | | - Juan Pablo Umaña
- Cardiovascular Surgery, Instituto de Cardiología-Fundación Cardioinfantil, Universidad del Rosario, Bogotá DC, Colombia
| | | | - Manolo Briceño
- Villamedic Group, Lima, Peru
- Clínica Internacional, Lima, Peru
| | | | - Raul Sebastian
- Department of Surgery, Northwest Hospital, Randallstown, MD, USA
| | | | - Gabriel De la Cruz-Ku
- Universidad Científica del Sur, Lima, Peru
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jiakai Ji
- Obstetrics and Gynecology, Lincoln Medical and Mental Health Center, Bronx, NY, USA
| | - Laura Zuluaga
- Department of Urology, Fundación Santa Fe de Bogotá, Colombia
| | | | - Albit Paoli
- Howard University Hospital, Washington, DC, USA
| | | | | | - Cristians Gonzalez
- Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut of Image-Guided Surgery (IHU-Strasbourg), Strasbourg, France
| | | | - Gabriel Escalona
- Experimental Surgery and Simulation Center, Department of Digestive Surgery, Catholic University of Chile, Santiago, Chile
| | - Ilaria Cinelli
- Aerospace Human Factors Association, Aerospace Medical Association, VA, USA
| | | |
Collapse
|
8
|
Chebib E, Lemarteleur V, Azalé M, Deneufbourg L, Ceccaldi PF, Teissier N. Step-by-step development and evaluation of a 3D printed home-made low-cost pediatric tracheobronchial tree for foreign body aspiration extractions. Int J Pediatr Otorhinolaryngol 2022; 153:111040. [PMID: 35026720 DOI: 10.1016/j.ijporl.2022.111040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/12/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The management of foreign body aspirations (FBA) is dreaded by pediatric physicians due to the high risk of respiratory distress and a potential fatal outcome, favored by a lack of experience of young specialists. Furthermore, there has been an increasing requirement for low-cost simulation. The aim was to describe the step-by-step manufacturing process and to validate a low-cost, easily home-made training model of pediatric tracheo-bronchial tree (pTBT) for simulation-based training in order to teach young physicians to practice foreign body (FBA) extractions. METHODS A simulator was designed in order to reproduce the physical and esthetic properties of a pTBT. The production cost of a single simulator was estimated. The simulator was then tested by experienced physicians using a rigid bronchoscope. A manufacturing manual of the simulator is hereby presented. A group of 7 experienced pediatric otolaryngologists performed a FBA extraction in the conditions of installation of an operating room. RESULTS The result of the survey showed a high fidelity of the simulator in mimicking the biological esthetics and physical properties of a pTBT during a FBA extraction (mean 4.3 ± 0.8). The total cost of the custom-made simulator is about 20.5 € ($23.4) for the production of the first simulator. CONCLUSIONS A highly realistic and easily reproducible pediatric tracheo-bronchial tree simulator is presented and can therefore be used during simulation-based training.
Collapse
Affiliation(s)
- Emilien Chebib
- Department of Otolaryngology, Robert Debre Hospital, Assistance Publique Hôpitaux de Paris (APHP) and Faculty of Medecine, University of Paris, Paris, France; Simulation Department of University of Paris, Paris, France.
| | | | - Mehdi Azalé
- Department of Anaesthesia and Intensive Care, Robert Debre Hospital, Assistance Publique Hôpitaux de Paris (APHP) and Faculty of Medecine, University of Paris, Paris, France
| | | | | | - Natacha Teissier
- Department of Otolaryngology, Robert Debre Hospital, Assistance Publique Hôpitaux de Paris (APHP) and Faculty of Medecine, University of Paris, Paris, France
| |
Collapse
|
9
|
Schlottmann F, Herbella FAM, Patti MG. Simulation for Foregut and Bariatric Surgery: Current Status and Future Directions. J Laparoendosc Adv Surg Tech A 2021; 31:546-550. [PMID: 33844957 DOI: 10.1089/lap.2021.0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Simulation offers the opportunity to practice in a safe, controlled, and standardized environment. Surgical simulation, in particular, is very attractive because it avoids learning and practicing surgical skills in the operating room. Many simulators are currently available such as box-lap trainers, virtual-reality platforms, cadavers, live animals, animal-based tissue blocks, and synthetic/artificial models. Endoscopic interventions can be practiced with high-fidelity virtual simulators. Box-lap trainers help practicing basic laparoscopic skills. Cadavers and live animals offer realism to train entire foregut and bariatric procedures. However, limited availability and high expenses often restrict their use. Ex vivo simulators with animal tissue blocks have been recently developed and appear to be a realistic and cost-effective alternative. Three-dimensional printing and real-time navigation systems have also emerged as promising training tools. Overall, further efforts are needed to develop a formal simulation curriculum with validated simulators for foregut and bariatric surgery.
Collapse
Affiliation(s)
| | | | - Marco G Patti
- Fellow American College of Surgeons, Chicago, Illinois, USA
| |
Collapse
|