1
|
Di Giulio M. The polyphyletic origins of glycyl-tRNA synthetase and lysyl-tRNA synthetase and their implications. Biosystems 2024; 244:105287. [PMID: 39127441 DOI: 10.1016/j.biosystems.2024.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
I analyzed the polyphyletic origin of glycyl-tRNA synthetase (GlyRS) and lysyl-tRNA synthetase (LysRS), making plausible the following implications. The fact that the genetic code needed to evolve aminoacyl-tRNA synthetases (ARSs) only very late would be in perfect agreement with a late origin, in the main phyletic lineages, of both GlyRS and LysRS. Indeed, as suggested by the coevolution theory, since the genetic code was structured by biosynthetic relationships between amino acids and as these occurred on tRNA-like molecules which were evidently already loaded with amino acids during its structuring, this made possible a late origin of ARSs. All this corroborates the coevolution theory of the origin of the genetic code to the detriment of theories which would instead predict an early intervention of the action of ARSs in organizing the genetic code. Furthermore, the assembly of the GlyRS and LysRS protein domains in main phyletic lineages is itself at least evidence of the possibility that ancestral genes were assembled using pieces of genetic material that coded these protein domains. This is in accordance with the exon theory of genes which postulates that ancestral exons coded for protein domains or modules that were assembled to form the first genes. This theory is exemplified precisely in the evolution of both GlyRS and LysRS which occurred through the assembly of protein domains in the main phyletic lineages, as analyzed here. Furthermore, this late assembly of protein domains of these proteins into the two main phyletic lineages, i.e. a polyphyletic origin of both GlyRS and LysRS, appears to corroborate the progenote evolutionary stage for both LUCA and at least the first part of the evolutionary stages of the ancestor of bacteria and that of archaea. Indeed, this polyphyletic origin would imply that the genetic code was still evolving because at least two ARSs, i.e. proteins that make the genetic code possible today, were still evolving. This would imply that the evolutionary stages involved were characterized not by cells but by protocells, that is, by progenotes because this is precisely the definition of a progenote. This conclusion would be strengthened by the observation that both GlyRS and LysRS originating in the phyletic lineages leading to bacteria and archaea, would demonstrate that, more generally, proteins were most likely still in rapid and progressive evolution. Namely, a polyphyletic origin of proteins which would qualify at least the initial phase of the evolutionary stage of the ancestor of bacteria and that of archaea as stages belonging to the progenote.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Early Evolution of Life Department, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy.
| |
Collapse
|
2
|
Di Giulio M. The time of appearance of the genetic code. Biosystems 2024; 237:105159. [PMID: 38373543 DOI: 10.1016/j.biosystems.2024.105159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
I support the hypothesis that the origin of the genetic code occurred simultaneously with the evolution of cellularity. That is to say, I favour the hypothesis that the origin of the genetic code is a very, very late event in the history of life on Earth. I corroborate this hypothesis with observations favouring the progenote's stage for the Last Universal Common Ancestor (LUCA), for the ancestor of bacteria and that of archaea. Indeed, these progenotic stages would imply that - at that time - the origin of the genetic code was still ongoing simply because this origin would fall within the very definition of progenote. Therefore, if the evolution of cellularity had truly been coeval with the origin of the genetic code - at least in its terminal part - then this would favour theories such as the coevolution theory of the origin of the genetic code because this theory would postulate that this origin must have occurred in extremely complex protocellular conditions and not concerning stereochemical or physicochemical interactions having to do with other stages of the origin of life. In this sense, the coevolution theory would be corroborated while the stereochemical and physicochemical theories would be damaged. Therefore, the origin of the genetic code would be linked to the origin of the cell and not to the origin of life as sometimes asserted. Therefore, I will discuss the late hypothesis of the origin of the genetic code in the context of the theories proposed to explain this origin and more generally of its implications for the early evolution of life.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Early Evolution of Life Department, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy.
| |
Collapse
|
3
|
Lei L, Burton ZF. The 3 31 Nucleotide Minihelix tRNA Evolution Theorem and the Origin of Life. Life (Basel) 2023; 13:2224. [PMID: 38004364 PMCID: PMC10672568 DOI: 10.3390/life13112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
There are no theorems (proven theories) in the biological sciences. We propose that the 3 31 nt minihelix tRNA evolution theorem be universally accepted as one. The 3 31 nt minihelix theorem completely describes the evolution of type I and type II tRNAs from ordered precursors (RNA repeats and inverted repeats). Despite the diversification of tRNAome sequences, statistical tests overwhelmingly support the theorem. Furthermore, the theorem relates the dominant pathway for the origin of life on Earth, specifically, how tRNAomes and the genetic code may have coevolved. Alternate models for tRNA evolution (i.e., 2 minihelix, convergent and accretion models) are falsified. In the context of the pre-life world, tRNA was a molecule that, via mutation, could modify anticodon sequences and teach itself to code. Based on the tRNA sequence, we relate the clearest history to date of the chemical evolution of life. From analysis of tRNA evolution, ribozyme-mediated RNA ligation was a primary driving force in the evolution of complexity during the pre-life-to-life transition. TRNA formed the core for the evolution of living systems on Earth.
Collapse
Affiliation(s)
- Lei Lei
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA;
| | - Zachary Frome Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Di Giulio M. The absence of the evolutionary state of the Prokaryote would imply a polyphyletic origin of proteins and that LUCA, the ancestor of bacteria and that of archaea were progenotes. Biosystems 2023; 233:105014. [PMID: 37652180 DOI: 10.1016/j.biosystems.2023.105014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
I analysed the similarity gradient observed in protein families - of phylogenetically deep fundamental traits - of bacteria and archaea, ranging from cases such as the core of the DNA replication apparatus where there is no sequence similarity between the proteins involved, to cases in which, as in the translation initiation factors, only some proteins involved would be homologs, to cases such as for aminoacyl-tRNA synthetases in which most of the proteins involved would be homologs. This pattern of similarity between bacteria and archaea would seem to be a very clear indication of a transitional evolutionary stage that preceded both the Last Bacterial Common Ancestor and the Last Archaeal Common Ancestor, i.e. progenotic stages. Indeed, this similarity pattern would seem to exemplify an ongoing transition as all the evolutionary phases would be represented in it. Instead, in the cellular stage it is expected that these evolutionary phases should have already been overcome, i.e. completed, and therefore no longer detectable. In fact, if we had really been in the presence of the prokaryotic stage then we should not have observed this similarity pattern in proteins involved in defining the ancestral characters of bacteria and archaea, as the completion of the different cellular structures should have required a very low number of proteins to be late evolved in lineages leading to bacteria and archaea. Indeed, the already reached state of the Prokaryote would have determined complete cellular structures therefore a total absence of proteins to evolve independently in the two main phyletic lineages and able to complete the evolution of a particular character already evidently in a definitive state, which, on the other hand, does not appear to have been the case. All this would have prevented the formation of this pattern of similarity which instead would appear to be real. In conclusion, the existence of this pattern of similarity observed in the families of homologous proteins of bacteria and archaea would imply the absence of the evolutionary stage of the Prokaryote and consequently a progenotic status to be assigned to the LUCA. Indeed, the LUCA stage would have been a stage of evolutionary transition because it is belatedly marked by the presence of all the different evolutionary phases, evidently more easily interpretable within the definition of progenote than that of genote precisely because they are inherent in an evolutionary transition and not to an evolution that has already been achieved. Finally, I discuss the importance of these arguments for the polyphyletic origin of proteins.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Early Evolution of Life Department, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy.
| |
Collapse
|
5
|
Guo X, Su M. The Origin of Translation: Bridging the Nucleotides and Peptides. Int J Mol Sci 2022; 24:ijms24010197. [PMID: 36613641 PMCID: PMC9820756 DOI: 10.3390/ijms24010197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Extant biology uses RNA to record genetic information and proteins to execute biochemical functions. Nucleotides are translated into amino acids via transfer RNA in the central dogma. tRNA is essential in translation as it connects the codon and the cognate amino acid. To reveal how the translation emerged in the prebiotic context, we start with the structure and dissection of tRNA, followed by the theory and hypothesis of tRNA and amino acid recognition. Last, we review how amino acids assemble on the tRNA and further form peptides. Understanding the origin of life will also promote our knowledge of artificial living systems.
Collapse
Affiliation(s)
- Xuyuan Guo
- School of Genetics and Microbiology, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, D02 PN40 Dublin, Ireland
| | - Meng Su
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Correspondence:
| |
Collapse
|
6
|
The origins of the cell membrane, the progenote, and the universal ancestor (LUCA). Biosystems 2022; 222:104799. [DOI: 10.1016/j.biosystems.2022.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/18/2022]
|
7
|
Di Giulio M. The RNase P, LUCA, the ancestors of the life domains, the progenote, and the tree of life. Biosystems 2021; 212:104604. [PMID: 34979158 DOI: 10.1016/j.biosystems.2021.104604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022]
Abstract
I have tried to interpret the phylogenetic distribution of the RNase P with the aim of helping to clarify the stage reached by the evolution of cellularity in the Last Universal Common Ancestor (LUCA); that is to say, if the evolutionary stage of the LUCA was represented by a protocell (progenote) or by a complete cell (genote). Since there are several arguments that lead one to believe that only the RNA moiety of the RNase P was present in the LUCA, this might imply that this evolutionary stage was actually the RNA world. If true this would imply that the LUCA was a progenote because the RNA world being a world subject to multiple evolutionary transitions that would involve a high noise at many its levels, which would fall within the definition of the progenote. Furthermore, since RNA-mediated catalysis is much less efficient than protein-mediated catalysis, then the only RNA moiety that was present in the LUCA could imply - by per se, without invoking the existence of the RNA world - that the LUCA was a progenote because an inefficient catalysis might have characterized this evolutionary stage. This evolutionary stage would still fall under the definition of the progenote. In addition, the observation that the protein moieties of the RNase P of bacteria and archaea are not-homologs would imply that these originated independently in the two main phyletic lineages. In turn, this would imply the progenotic nature of the ancestors of both archaea and bacteria. Indeed, it is admissible that such a late origin - in the main phyletic lineages - of the protein moieties of the RNase P is witness to an evolutionary transition towards a more efficient catalysis, evidently made clear precisely by the evolution of the protein moieties of the RNase P which would have helped the RNA of the RNase P to a more efficient catalysis. Hence, this would date that evolutionary moment as a transition to a much more efficient catalysis and consequently would imply which in that evolutionary stage there was the actual transition from the progenotic to genotic status. Finally, this late origin of the RNase P protein moieties in the bacterial and archaeal domains per se could imply the presence of a progenotic stage for their ancestors, or at least that a cell stage would have been much less likely. In fact, it is true that genes can originate both in a cellular and in a progenotic stage, but they mainly typify the latter because they are, by definition, in formation. Then it is expected that in the evolutionary stage of the formation of the main phyletic lineages - that is to say, in an evolutionary time in which the formation of genes might be expected - that the origin of proteins is to be related to a rapid and progressive evolution typical of the progenote precisely because in such an evolutionary stage the origin of genes is more easily and simply explained as reflecting a progenotic rather than a genotic stage. Indeed, if instead the evolutionary stage of the ancestors of bacteria and archaea had been the cellular one, then observing the origin of the protein moieties of the RNase P would have been, to some extent, anomalous because this completion should have already occurred, simply because the transformation of a ribozyme into an enzyme should have already taken place precisely because it falls within the very definition of the cellular status. The conclusion is that both the LUCA and the ancestor of archaea and that of bacteria may have been progenotes. If these arguments were true then either the tree of life as commonly understood would not exist and therefore the main phyletic lineages would have originated directly from the LUCA, or there would have been at least two different populations of progenotes that would have finally defined the domain of bacteria and that of archaea.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena (L'Aquila), Italy.
| |
Collapse
|
8
|
Di Giulio M. The phylogenetic distribution of the cell division system would not imply a cellular LUCA but a progenotic LUCA. Biosystems 2021; 210:104563. [PMID: 34653531 DOI: 10.1016/j.biosystems.2021.104563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022]
Abstract
The stage reached by the evolution of cellularity in the Last Universal Common Ancestor (LUCA) has not yet been identified. In actual fact, it has not been clarified whether the LUCA was a cell (genote) or a protocell (progenote). Recently, Pende et al. (2021) analysed the phylogenetic distribution of the cell division system present in bacteria and archaea reaching the conclusion that LUCA was a cell and not a progenote. I find this conclusion unreasonable with respect to the observations they presented. One of the points is that the presence in the domains of life of many genes - some paralogs - which would define the membrane-remodeling superfamily would seem to imply a tempo and a mode of evolution for the LUCA more typical of the progenote than the genote. Indeed, the simultaneous presence of different genes - in a given evolutionary stage and with functions that are also partially correlated - would seem to define a heterogeneity that would appear to be the expression of a rapid and progressive evolution precisely because this evolution would have taken place in the diversification of all these genes. Furthermore, the presence of different genes coding for the function of cell division and related functions could reflect a progenotic status in LUCA, precisely because these functions might have originated from a single ancestral gene instead coding for a protein (or proteins) with multiple functions, and therefore an expression of a rapid and progressive evolution typical of the progenote. I also criticize other aspects of considerations made by Pende at al. (2021). The arguments presented here together with those existing in the literature make the hypothesis of a cellular LUCA favoured by Pende et al. (2021) unlikely.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena (L'Aquila), Italy.
| |
Collapse
|
9
|
Di Giulio M. Errors of the ancestral translation, LUCA, and nature of its direct descendants. Biosystems 2021; 206:104433. [PMID: 33915233 DOI: 10.1016/j.biosystems.2021.104433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
I analyzed the implications of the observation that the methyltransferases, Trm5 and TrmD, which perform the methylation of the 37th base (m1G37) in tRNAs of bacteria and archaea respectively, are not homologous proteins. The first implication is that these methyltransferases originated very late only when the fundamental lineages leading to bacteria and archaea had separated, otherwise the two methyltransferases would have been homologous enzymes, which they are not. The conclusion that Trm5 and TrmD originated only when the main lineages were defined would imply that at least some aspects of the translation, such as +1 frameshifting, were still in rapid and progressive evolution, that is, they were still originating. This would in itself imply a high rate of translation errors because the absence of m1G37 from tRNAs could have determined a high rate of +1 translational frameshifting in the reading of mRNAs, identifying this stage as that of a phase of the origin of the genetic code. Furthermore, the observation that the frameshifting mechanism was still in rapid and progressive evolution in such an advanced evolutionary stage would imply that other mechanisms concerning translation were still rapidly evolving simply because it would be very unique if only the frameshifting mechanism were the only one still originating. Importantly, the observation that in archaea m1G37 also acts as a determinant of the identity of the tRNACysGCA would imply in itself that some aspects of the origin of the genetic code were still originating, greatly strengthening the hypothesis that other aspects of the translation apparatus were still in rapid and progressive evolution. Then, all this would imply a status of progenote for LUCA and ancestors of archaea and bacteria because a high rate of translation errors would fall within the definition of progenote.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy; Institute of Biosciences and Bioresources, National Research Council, Via P. Castellino, 111, 80131, Naples, Italy.
| |
Collapse
|
10
|
Di Giulio M. The late appearance of DNA, the nature of the LUCA and ancestors of the domains of life. Biosystems 2020; 202:104330. [PMID: 33352234 DOI: 10.1016/j.biosystems.2020.104330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 01/27/2023]
Abstract
It has been firmly observed that replicative DNA polymerases of bacteria, archaea and eukaryotes are not homologous proteins. This lack of homology in the replication apparatus among the domains of life is not only compatible with but would seem to imply the view that the emergence of DNA occurred in the fundamental cellular lineages. In consequence, this diversity of DNA polymerase would go back to the level of ancestors of the domains of life and to the evolutionary time in which the DNA emerged. Therefore, the presumed evolutionary stage linked to the RNA- > DNA transition would have occurred only at the level of ancestors of the main lineages of the tree of life. Thus, the high noise associated with this major evolutionary transition and the impossibility for a cellular stage to generate different fundamental genetically profound traits - such as the different replication apparatuses of bacteria, archaea and eukaryotes - would imply not only that the last universal common ancestor (LUCA) was a progenote but that the ancestors of the domains of life were also at this evolutionary stage. So, I criticize the hypotheses which want, instead, that completely different cells - such as, bacteria and archaea - could have originated from a cellular LUCA.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena (L'Aquila), Italy; Institute of Biosciences and Bioresources, National Research Council, Via P. Castellino, 111, 80131, Naples, Italy.
| |
Collapse
|
11
|
Di Giulio M. LUCA as well as the ancestors of archaea, bacteria and eukaryotes were progenotes: Inference from the distribution and diversity of the reading mechanism of the AUA and AUG codons in the domains of life. Biosystems 2020; 198:104239. [PMID: 32919036 DOI: 10.1016/j.biosystems.2020.104239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 11/25/2022]
Abstract
Here I use the rationale assuming that if of a certain trait that exerts its function in some aspect of the genetic code or, more generally, in protein synthesis, it is possible to identify the evolutionary stage of its origin then it would imply that this evolutionary moment would be characterized by a high translational noise because this trait would originate for the first time during that evolutionary stage. That is to say, if this trait had a non-marginal role in the realization of the genetic code, or in protein synthesis, then the origin of this trait would imply that, more generally, it was the genetic code itself that was still originating. But if the genetic code were still originating - at that precise evolutionary stage - then this would imply that there was a high translational noise which in turn would imply that it was in the presence of a protocell, i.e. a progenote that was by definition characterized by high translational noise. I apply this rationale to the mechanism of modification of the base 34 of the anticodon of an isoleucine tRNA that leads to the reading of AUA and AUG codons in archaea, bacteria and eukaryotes. The phylogenetic distribution of this mechanism in these phyletic lineages indicates that this mechanism originated only after the evolutionary stage of the last universal common ancestor (LUCA), namely, during the formation of cellular domains, i.e., at the stage of ancestors of these main phyletic lineages. Furthermore, given that this mechanism of modification of the base 34 of the anticodon of the isoleucine tRNA would result to emerge at a stage of the origin of the genetic code - despite in its terminal phases - then all this would imply that the ancestors of bacteria, archaea and eukaryotes were progenotes. If so, all the more so, the LUCA would also be a progenote since it preceded these ancestors temporally. A consequence of all this reasoning might be that since these three ancestors were of the progenotes that were different from each other, if at least one of them had evolved into at least two real and different cells - basically different from each other - then the number of cellular domains would not be three but it would be greater than three.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena (L'Aquila), Italy; Institute of Biosciences and Bioresources, National Research Council, Via P. Castellino, 111, 80131, Naples, Italy.
| |
Collapse
|
12
|
The phylogenetic distribution of the glutaminyl-tRNA synthetase and Glu-tRNA Gln amidotransferase in the fundamental lineages would imply that the ancestor of archaea, that of eukaryotes and LUCA were progenotes. Biosystems 2020; 196:104174. [PMID: 32535177 DOI: 10.1016/j.biosystems.2020.104174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
The function of the glutaminyl-tRNA synthetase and Glu-tRNAGln amidotransferase might be related to the origin of the genetic code because, for example, glutaminyl-tRNA synthetase catalyses the fundamental reaction that makes the genetic code. If the evolutionary stage of the origin of these two enzymes could be unambiguously identified, then the genetic code should still have been originating at that particular evolutionary stage because the fundamental reaction that makes the code itself was still evidently evolving. This would result in that particular evolutionary moment being attributed to the evolutionary stage of the progenote because it would have a relationship between the genotype and the phenotype not yet fully realized because the genetic code was precisely still originating. I then analyzed the distribution of the glutaminyl-tRNA synthetase and Glu-tRNAGln aminodotrasferase in the main phyletic lineages. Since in some cases the origin of these two enzymes can be related to the evolutionary stages of ancestors of archaea and eukaryotes, this would indicate these ancestors as progenotes because at that evolutionary moment the genetic code was evidently still evolving, thus realizing the definition of progenote. The conclusion that the ancestor of archaea and that of eukaryotes were progenotes would imply that even the last universal common ancestor (LUCA) was a progenote because it appeared, on the tree of life, temporally before these ancestors.
Collapse
|
13
|
Demongeot J, Seligmann H. Comparisons between small ribosomal RNA and theoretical minimal RNA ring secondary structures confirm phylogenetic and structural accretion histories. Sci Rep 2020; 10:7693. [PMID: 32376895 PMCID: PMC7203183 DOI: 10.1038/s41598-020-64627-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomal RNAs are complex structures that presumably evolved by tRNA accretions. Statistical properties of tRNA secondary structures correlate with genetic code integration orders of their cognate amino acids. Ribosomal RNA secondary structures resemble those of tRNAs with recent cognates. Hence, rRNAs presumably evolved from ancestral tRNAs. Here, analyses compare secondary structure subcomponents of small ribosomal RNA subunits with secondary structures of theoretical minimal RNA rings, presumed proto-tRNAs. Two independent methods determined different accretion orders of rRNA structural subelements: (a) classical comparative homology and phylogenetic reconstruction, and (b) a structural hypothesis assuming an inverted onion ring growth where the three-dimensional ribosome's core is most ancient and peripheral elements most recent. Comparisons between (a) and (b) accretions orders with RNA ring secondary structure scales show that recent rRNA subelements are: 1. more like RNA rings with recent cognates, indicating ongoing coevolution between tRNA and rRNA secondary structures; 2. less similar to theoretical minimal RNA rings with ancient cognates. Our method fits (a) and (b) in all examined organisms, more with (a) than (b). Results stress the need to integrate independent methods. Theoretical minimal RNA rings are potential evolutionary references for any sequence-based evolutionary analyses, independent of the focal data from that study.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel
| |
Collapse
|
14
|
RNA Rings Strengthen Hairpin Accretion Hypotheses for tRNA Evolution: A Reply to Commentaries by Z.F. Burton and M. Di Giulio. J Mol Evol 2020; 88:243-252. [PMID: 32025759 DOI: 10.1007/s00239-020-09929-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023]
Abstract
Theoretical minimal RNA ring design ensures coding over the shortest length once for each coding signal (start and stop codons, and each amino acid) and their hairpin configuration. These constraints define 25 RNA rings which surprisingly resemble ancestral tRNA loops, suggesting commonalities between RNA ring design and proto-tRNAs. RNA rings share several other properties with tRNAs, suggesting that primordial RNAs were multifunctional peptide coding sequences and structural RNAs. Two hypotheses, respectively, by M. Di Giulio and Z.F. Burton, derived from cloverleaf structural symmetries suggest that two and three, respectively, stem-loop hairpins agglutinated into tRNAs. Their authors commented that their respective structure-based hypotheses reflect better tRNA structure than RNA rings. Unlike these hypotheses, RNA ring design uses no tRNA-derived information, rendering model predictive power comparisons senseless. Some analyses of RNA ring primary and secondary structures stress RNA ring splicing in their predicted anticodon's midst, indicating ancestrality of split tRNAs, as the two-piece model predicts. Advancement of knowledge, rather than of specific hypotheses, gains foremost by examining independent hypotheses for commonalities, and only secondarily for discordances. RNA rings mimick ancestral biomolecules including tRNAs, and their evolution, and constitute an interesting synthetic system for early prebiotic evolution tests/simulations.
Collapse
|
15
|
Demongeot J, Seligmann H. Accretion history of large ribosomal subunits deduced from theoretical minimal RNA rings is congruent with histories derived from phylogenetic and structural methods. Gene 2020; 738:144436. [PMID: 32027954 DOI: 10.1016/j.gene.2020.144436] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022]
Abstract
Accretions of tRNAs presumably formed the large complex ribosomal RNA structures. Similarities of tRNA secondary structures with rRNA secondary structures increase with the integration order of their cognate amino acid in the genetic code, indicating tRNA evolution towards rRNA-like structures. Here analyses rank secondary structure subelements of three large ribosomal RNAs (Prokaryota: Archaea: Thermus thermophilus; Bacteria: Escherichia coli; Eukaryota: Saccharomyces cerevisiae) in relation to their similarities with secondary structures formed by presumed proto-tRNAs, represented by 25 theoretical minimal RNA rings. These ranks are compared to those derived from two independent methods (ranks provide a relative evolutionary age to the rRNA substructure), (a) cladistic phylogenetic analyses and (b) 3D-crystallography where core subelements are presumed ancient and peripheral ones recent. Comparisons of rRNA secondary structure subelements with RNA ring secondary structures show congruence between ranks deduced by this method and both (a) and (b) (more with (a) than (b)), especially for RNA rings with predicted ancient cognate amino acid. Reconstruction of accretion histories of large rRNAs will gain from adequately integrating information from independent methods. Theoretical minimal RNA rings, sequences deterministically designed in silico according to specific coding constraints, might produce adequate scales for prebiotic and early life molecular evolution.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700 La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700 La Tronche, France; The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel.
| |
Collapse
|
16
|
Common ancestry of eukaryotes and Asgardarchaeota: Three, two or more cellular domains of life? J Theor Biol 2020; 486:110083. [DOI: 10.1016/j.jtbi.2019.110083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/08/2019] [Accepted: 11/15/2019] [Indexed: 11/24/2022]
|
17
|
Di Giulio M. An RNA Ring was Not the Progenitor of the tRNA Molecule. J Mol Evol 2020; 88:228-233. [PMID: 31980854 DOI: 10.1007/s00239-020-09927-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
I analyzed the model that suggests that an RNA ring might have been the progenitor of the tRNA molecule (Demongeot and Moreira in J Theor Biol 249:314-324, 2007; Demongeot and Seligmann in J Mol Evol 1-23, 2019a; Demongeot and Norris in Life 9(2):51, 2019). In particular, I analyze three ways in which this precursor, especially in its RNA hairpin form, could have evolved into the complete tRNA molecule. These three modalities are based on multiple duplication events, and therefore, appear to be less parsimonious than that which assumes that this molecule originated through one duplication of a single hairpin structure. The conclusion is, therefore, that the latter model appears to be preferable with respect to that of the RNA ring, also because there are many independent observations and some of a historical nature that would corroborate it in an extraordinary way.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy. .,Institute of Biosciences and Bioresources, National Research Council, Via P. Castellino, 111, 80131, Naples, Italy.
| |
Collapse
|
18
|
The Uroboros Theory of Life's Origin: 22-Nucleotide Theoretical Minimal RNA Rings Reflect Evolution of Genetic Code and tRNA-rRNA Translation Machineries. Acta Biotheor 2019; 67:273-297. [PMID: 31388859 DOI: 10.1007/s10441-019-09356-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Theoretical minimal RNA rings attempt to mimick life's primitive RNAs. At most 25 22-nucleotide-long RNA rings code once for each biotic amino acid, a start and a stop codon and form a stem-loop hairpin, resembling consensus tRNAs. We calculated, for each RNA ring's 22 potential splicing positions, similarities of predicted secondary structures with tRNA vs. rRNA secondary structures. Assuming rRNAs partly derived from tRNA accretions, we predict positive associations between relative secondary structure similarities with rRNAs over tRNAs and genetic code integration orders of RNA ring anticodon cognate amino acids. Analyses consider for each secondary structure all nucleotide triplets as potential anticodon. Anticodons for ancient, chemically inert cognate amino acids are most frequent in the 25 RNA rings. For RNA rings with primordial cognate amino acids according to tRNA-homology-derived anticodons, tRNA-homology and coding sequences coincide, these are separate for predicted cognate amino acids that presumably integrated late the genetic code. RNA ring secondary structure similarity with rRNA over tRNA secondary structures associates best with genetic code integration orders of anticodon cognate amino acids when assuming split anticodons (one and two nucleotides at the spliced RNA ring 5' and 3' extremities, respectively), and at predicted anticodon location in the spliced RNA ring's midst. Results confirm RNA ring homologies with tRNAs and CDs, ancestral status of tRNA half genes split at anticodons, the tRNA-rRNA axis of RNA evolution, and that single theoretical minimal RNA rings potentially produce near-complete proto-tRNA sets. Hence genetic code pre-existence determines 25 short circular gene- and tRNA-like RNAs. Accounting for each potential splicing position, each RNA ring potentially translates most amino acids, realistically mimicks evolution of the tRNA-rRNA translation machinery. These RNA rings 'of creation' remind the uroboros' (snake biting its tail) symbolism for creative regeneration.
Collapse
|
19
|
Di Giulio M. A comparison between two models for understanding the origin of the tRNA molecule. J Theor Biol 2019; 480:99-103. [DOI: 10.1016/j.jtbi.2019.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/06/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
|
20
|
Mandal UR, Das SS, Chattopadhyay B, Sahoo S. Identified Hybrid tRNA Structure Genes in Archaeal Genome. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e2254. [PMID: 32195286 PMCID: PMC7080975 DOI: 10.29252/ijb.2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Background In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separated genes encoding tRNA halves to generate suppressive variants of missing tRNAs. Objectives The exploration of tRNA genes from a genome with varying hypotheses, among all three domain of life (eukaryotes, bacteria and archaea), has been rapidly identified in different ways in the field of bioinformatics. Like eukaryotic tRNA genes, it has been established that two separated regions of the coding sequence of a tRNA gene are essential and sufficient for promotion of transcription. Our objective is to find out the two essential regions in the genome sequence which comprises two halves of the hidden tRNAs. Material and Methods Considering the existence of split tRNA genes widely separated throughout the genome, we developed our tRNA search algorithm to predict such separated tRNA genes by searching both a conserved terminal 5'- and 3'-motif of tRNA in agreement with the split hypothesis on the basis of cloverleaf prediction and precise insilico determination of bulge-helix-bulge secondary structure at the splice sites. Results By a comprehensive search for all kinds of missing tRNA genes, we have constructed hybrid tRNA genes containing one essential region from tDNA (XYZ) and the other from tDNA (ABC), both from same species in the archaea. We have also found, this type of hybrid tRNA genes are identified in the different species of the archaea (XYZ ASN, ARG and MET; ABC ASP,SER, ARG and PRO).These hybrid split tRNA share a common structural motif called bulge-helix-bulge (BHB) a more relaxed bulge-helix loop (BHL), at the leader exon boundary and suggested to be evolutionary interrelated. Conclusions Analysis of the complete genome sequences of Metallosphaera sedula DSM 5348, Desulfurococcus kamchatkensis 1221n and Ignicoccus hospitalis KIN4/I in archaea by our algorithm revealed that a number of hybrid tRNAs are constructed from different tDNAs . Asymmetric combination of 5' and 3' tRNA halves may have generated the diversity of tRNA molecules. Our study of hybrid tRNA genes will provide a new molecular basis for upcoming tRNA studies.
Collapse
Affiliation(s)
- Uttam Roy Mandal
- Department of Mathematics, Raidighi College, Raidighi, W.B., India
| | - Shib Sankar Das
- Department of Mathematics, Uluberia College, Uluberia, Howrah, W.B, India
| | | | - Satyabrata Sahoo
- Department of Physics, Dhruba Chand Halder College, Dakshin Barasat, W.B., India
| |
Collapse
|
21
|
Dynamic evolution of mitochondrial genomes in Trebouxiophyceae, including the first completely assembled mtDNA from a lichen-symbiont microalga (Trebouxia sp. TR9). Sci Rep 2019; 9:8209. [PMID: 31160653 PMCID: PMC6547736 DOI: 10.1038/s41598-019-44700-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Trebouxiophyceae (Chlorophyta) is a species-rich class of green algae with a remarkable morphological and ecological diversity. Currently, there are a few completely sequenced mitochondrial genomes (mtDNA) from diverse Trebouxiophyceae but none from lichen symbionts. Here, we report the mitochondrial genome sequence of Trebouxia sp. TR9 as the first complete mtDNA sequence available for a lichen-symbiont microalga. A comparative study of the mitochondrial genome of Trebouxia sp. TR9 with other chlorophytes showed important organizational changes, even between closely related taxa. The most remarkable change is the enlargement of the genome in certain Trebouxiophyceae, which is principally due to larger intergenic spacers and seems to be related to a high number of large tandem repeats. Another noticeable change is the presence of a relatively large number of group II introns interrupting a variety of tRNA genes in a single group of Trebouxiophyceae, which includes Trebouxiales and Prasiolales. In addition, a fairly well-resolved phylogeny of Trebouxiophyceae, along with other Chlorophyta lineages, was obtained based on a set of seven well-conserved mitochondrial genes.
Collapse
|
22
|
Ikehara K. The Origin of tRNA Deduced from Pseudomonas aeruginosa 5' Anticodon-Stem Sequence : Anticodon-stem loop hypothesis. ORIGINS LIFE EVOL B 2019; 49:61-75. [PMID: 31077036 DOI: 10.1007/s11084-019-09573-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/28/2019] [Indexed: 10/26/2022]
Abstract
The riddle of the origin of life is unsolved as yet. One of the best ways to solve the riddle would be to find a vestige of the first life from databases of DNA and/or protein of modern organisms. It would be, especially, important to know the origin of tRNA, because it mediates between genetic information and the amino acid sequence of a protein. Here I attempt to find a vestige of the origin and evolution of tRNA from base sequences of Pseudomonas aeruginosa tRNA gene. It was first perceived that 5' anticodon (AntiC) stem sequences of P. aeruginosa tRNA for translation of G-start codon (GNN) are intimately and mutually related. Then, mutual relations among all of the forty-two 5' AntiC stem sequences of P. aeruginosa tRNA were examined. These relationships imply that P. aeruginosa tRNA originated from four anticodon stem-loops (AntiC-SL) translating GNC codons to the corresponding four amino acids, Gly, Ala, Asp and Val (where N is G, C, A, or T). In contrast to the case of AntiC-stem sequence, a mutual relation map could not be drawn with D-, T- and acceptor-stem sequences of P. aeruginosa tRNA. Thus I conclude that the four AntiC-SLs were the first primeval tRNAs.
Collapse
Affiliation(s)
- Kenji Ikehara
- G&L Kyosei Institute, Koharu Bld. 202, Hokkeji 153-4, Nara, 630-8001, Japan.
- The International Institute for Advanced Studies of Japan, Kizugawadai 9-3, Kizugawa, Kyoto, 619-0225, Japan.
- Professor Emeritus of Nara Women's University, Nara, Japan.
| |
Collapse
|
23
|
A qualitative criterion for identifying the root of the tree of life. J Theor Biol 2019; 464:126-131. [DOI: 10.1016/j.jtbi.2018.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 11/18/2022]
|
24
|
Di Giulio M. The universal ancestor, the deeper nodes of the tree of life, and the fundamental types of primary cells (cellular domains). J Theor Biol 2019; 460:142-143. [DOI: 10.1016/j.jtbi.2018.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/28/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
|
25
|
Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett 2019; 366:5281434. [PMID: 30629179 PMCID: PMC6349945 DOI: 10.1093/femsle/fnz008] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Archaea-a primary domain of life besides Bacteria-have for a long time been regarded as peculiar organisms that play marginal roles in biogeochemical cycles. However, this picture changed with the discovery of a large diversity of archaea in non-extreme environments enabled by the use of cultivation-independent methods. These approaches have allowed the reconstruction of genomes of uncultivated microorganisms and revealed that archaea are diverse and broadly distributed in the biosphere and seemingly include a large diversity of putative symbiotic organisms, most of which belong to the tentative archaeal superphylum referred to as DPANN. This archaeal group encompasses at least 10 different lineages and includes organisms with extremely small cell and genome sizes and limited metabolic capabilities. Therefore, many members of DPANN may be obligately dependent on symbiotic interactions with other organisms and may even include novel parasites. In this contribution, we review the current knowledge of the gene repertoires and lifestyles of members of this group and discuss their placement in the tree of life, which is the basis for our understanding of the deep microbial roots and the role of symbiosis in the evolution of life on Earth.
Collapse
Affiliation(s)
- Nina Dombrowski
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Jun-Hoe Lee
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, P.O. Box 596, Husargatan 3, SE-75123 Uppsala, Sweden
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, Bristol BS8 1TQ, UK
| | - Pierre Offre
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands
| | - Anja Spang
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, P.O. Box 596, Husargatan 3, SE-75123 Uppsala, Sweden
| |
Collapse
|
26
|
Di Giulio M. On Earth, there would be a number of fundamental kinds of primary cells – cellular domains – greater than or equal to four. J Theor Biol 2018; 443:10-17. [DOI: 10.1016/j.jtbi.2018.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 11/15/2022]
|
27
|
|
28
|
Macé K, Gillet R. Origins of tmRNA: the missing link in the birth of protein synthesis? Nucleic Acids Res 2016; 44:8041-51. [PMID: 27484476 PMCID: PMC5041485 DOI: 10.1093/nar/gkw693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
The RNA world hypothesis refers to the early period on earth in which RNA was central in assuring both genetic continuity and catalysis. The end of this era coincided with the development of the genetic code and protein synthesis, symbolized by the apparition of the first non-random messenger RNA (mRNA). Modern transfer-messenger RNA (tmRNA) is a unique hybrid molecule which has the properties of both mRNA and transfer RNA (tRNA). It acts as a key molecule during trans-translation, a major quality control pathway of modern bacterial protein synthesis. tmRNA shares many common characteristics with ancestral RNA. Here, we present a model in which proto-tmRNAs were the first molecules on earth to support non-random protein synthesis, explaining the emergence of early genetic code. In this way, proto-tmRNA could be the missing link between the first mRNA and tRNA molecules and modern ribosome-mediated protein synthesis.
Collapse
Affiliation(s)
- Kevin Macé
- Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, 35042 Rennes cedex, France
| | - Reynald Gillet
- Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, 35042 Rennes cedex, France Institut Universitaire de France
| |
Collapse
|
29
|
Katz A, Elgamal S, Rajkovic A, Ibba M. Non-canonical roles of tRNAs and tRNA mimics in bacterial cell biology. Mol Microbiol 2016; 101:545-58. [PMID: 27169680 DOI: 10.1111/mmi.13419] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 12/27/2022]
Abstract
Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl-tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl-tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond translation include synthetic, regulatory and information functions within the cell. Here we provide an overview of the non-canonical roles of tRNAs and their mimics in bacteria, and discuss some of the common themes that arise when comparing these different functions.
Collapse
Affiliation(s)
- Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Sara Elgamal
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| | - Andrei Rajkovic
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| | - Michael Ibba
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
30
|
tRNA Core Hypothesis for the Transition from the RNA World to the Ribonucleoprotein World. Life (Basel) 2016; 6:life6020015. [PMID: 27023615 PMCID: PMC4931452 DOI: 10.3390/life6020015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/29/2016] [Accepted: 03/18/2016] [Indexed: 01/10/2023] Open
Abstract
Herein we present the tRNA core hypothesis, which emphasizes the central role of tRNAs molecules in the origin and evolution of fundamental biological processes. tRNAs gave origin to the first genes (mRNA) and the peptidyl transferase center (rRNA), proto-tRNAs were at the core of a proto-translation system, and the anticodon and operational codes then arose in tRNAs molecules. Metabolic pathways emerged from evolutionary pressures of the decoding systems. The transitions from the RNA world to the ribonucleoprotein world to modern biological systems were driven by three kinds of tRNAs transitions, to wit, tRNAs leading to both mRNA and rRNA.
Collapse
|
31
|
Tran TTT, Belahbib H, Bonnefoy V, Talla E. A Comprehensive tRNA Genomic Survey Unravels the Evolutionary History of tRNA Arrays in Prokaryotes. Genome Biol Evol 2015; 8:282-95. [PMID: 26710853 PMCID: PMC4758250 DOI: 10.1093/gbe/evv254] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2015] [Indexed: 01/12/2023] Open
Abstract
Considering the importance of tRNAs in the translation machinery, scant attention has been paid to tRNA array units defined as genomic regions containing at least 20 tRNA genes with a minimal tRNA gene density of two tRNA genes per kilobase. Our analysis of Acidithiobacillus ferrivorans CF27 and Acidithiobacillus ferrooxidans ATCC 23270(T) genomes showed that both display a tRNA array unit with syntenic conservation which mainly contributed to the tRNA gene redundancy in these two organisms. Our investigations into the occurrence and distribution of tRNA array units revealed that 1) this tRNA organization is limited to few phyla and mainly found in Gram-positive bacteria; and 2) the presence of tRNA arrays favors the redundancy of tRNA genes, in particular those encoding the core tRNA isoacceptors. Finally, comparative array organization revealed that tRNA arrays were acquired through horizontal gene transfer (from Firmicutes or unknown donor), before being subjected to tRNA rearrangements, deletions, and duplications. In Bacilli, the most parsimonious evolutionary history involved two common ancestors and the acquisition of their arrays arose late in evolution, in the genera branches. Functional roles of the array units in organism lifestyle, selective genetic advantage and translation efficiency, as well as the evolutionary advantages of organisms harboring them were proposed. Our study offers new insight into the structural organization and evolution of tRNA arrays in prokaryotic organisms.
Collapse
Affiliation(s)
- Tam T T Tran
- Aix Marseille Université, CNRS, IGS, UMR 7256, IMM, France
| | | | | | - Emmanuel Talla
- Aix Marseille Université, CNRS, IGS, UMR 7256, IMM, France
| |
Collapse
|
32
|
How amino acids and peptides shaped the RNA world. Life (Basel) 2015; 5:230-46. [PMID: 25607813 PMCID: PMC4390850 DOI: 10.3390/life5010230] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 12/16/2014] [Accepted: 01/14/2015] [Indexed: 11/17/2022] Open
Abstract
The “RNA world” hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this view is incomplete at best. The modern protein-RNA ribosome most probably is not a distorted form of a “pure RNA ribosome” evolution started out with. Though the oldest center of the ribosome seems “RNA only”, we cannot conclude from this that it ever functioned in an environment without amino acids and/or peptides. Very small RNAs (versatile and stable due to basepairing) and amino acids, as well as dipeptides, coevolved. Remember, it is the amino group of aminoacylated tRNA that attacks peptidyl-tRNA, destroying the bond between peptide and tRNA. This activity of the amino acid part of aminoacyl-tRNA illustrates the centrality of amino acids in life. With the rise of the “RNA world” view of early life, the pendulum seems to have swung too much towards the ribozymatic part of early biochemistry. The necessary presence and activity of amino acids and peptides is in need of highlighting. In this article, we try to bring the role of the peptide component of early life back into focus. We argue that an RNA world completely independent of amino acids never existed.
Collapse
|
33
|
RNA editing and modifications of RNAs might have favoured the evolution of the triplet genetic code from an ennuplet code. J Theor Biol 2014; 359:1-5. [DOI: 10.1016/j.jtbi.2014.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 11/24/2022]
|
34
|
Yoshihisa T. Handling tRNA introns, archaeal way and eukaryotic way. Front Genet 2014; 5:213. [PMID: 25071838 PMCID: PMC4090602 DOI: 10.3389/fgene.2014.00213] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/20/2014] [Indexed: 11/25/2022] Open
Abstract
Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- Graduate School of Life Science, University of Hyogo Ako-gun, Hyogo, Japan
| |
Collapse
|
35
|
Fujishima K, Kanai A. tRNA gene diversity in the three domains of life. Front Genet 2014; 5:142. [PMID: 24904642 PMCID: PMC4033280 DOI: 10.3389/fgene.2014.00142] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/28/2014] [Indexed: 11/29/2022] Open
Abstract
Transfer RNA (tRNA) is widely known for its key role in decoding mRNA into protein. Despite their necessity and relatively short nucleotide sequences, a large diversity of gene structures and RNA secondary structures of pre-tRNAs and mature tRNAs have recently been discovered in the three domains of life. Growing evidences of disrupted tRNA genes in the genomes of Archaea reveals unique gene structures such as, intron-containing tRNA, split tRNA, and permuted tRNA. Coding sequence for these tRNAs are either separated with introns, fragmented, or permuted at the genome level. Although evolutionary scenario behind the tRNA gene disruption is still unclear, diversity of tRNA structure seems to be co-evolved with their processing enzyme, so-called RNA splicing endonuclease. Metazoan mitochondrial tRNAs (mtRNAs) are known for their unique lack of either one or two arms from the typical tRNA cloverleaf structure, while still maintaining functionality. Recently identified nematode-specific V-arm containing tRNAs (nev-tRNAs) possess long variable arms that are specific to eukaryotic class II tRNASer and tRNALeu but also decode class I tRNA codons. Moreover, many tRNA-like sequences have been found in the genomes of different organisms and viruses. Thus, this review is aimed to cover the latest knowledge on tRNA gene diversity and further recapitulate the evolutionary and biological aspects that caused such uniqueness.
Collapse
Affiliation(s)
- Kosuke Fujishima
- NASA Ames Research Center Moffett Field, CA, USA ; Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| |
Collapse
|
36
|
Di Giulio M. The split genes of Nanoarchaeum equitans have not originated in its lineage and have been merged in another Nanoarchaeota: A reply to Podar et al. J Theor Biol 2014; 349:167-9. [DOI: 10.1016/j.jtbi.2014.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/22/2014] [Accepted: 02/11/2014] [Indexed: 01/28/2023]
|
37
|
Seligmann H, Labra A. Tetracoding increases with body temperature in Lepidosauria. Biosystems 2013; 114:155-63. [DOI: 10.1016/j.biosystems.2013.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
|
38
|
Seligmann H. Putative anticodons in mitochondrial tRNA sidearm loops: Pocketknife tRNAs? J Theor Biol 2013; 340:155-63. [PMID: 24012463 DOI: 10.1016/j.jtbi.2013.08.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
The hypothesis that tRNA sidearm loops bear anticodons assumes crossovers between anticodon and sidearms, or translation by expressed aminoacylated tRNA halves forming single stem-loops. Only the latter might require ribosomal adaptations. Drosophila mitochondrial codon usages coevolve with sidearm numbers bearing matching putative anticodons (comparing different codon families in one genome, macroevolution) and when comparing different genomes for single codon families (microevolution). Coevolution between Drosophila and yeast mitochondrial antisense tRNAs and codon usages partly confounds microevolutionary patterns for putative sidearm anticodons. Some tRNA sidearm loops have more than seven nucleotides, putative expanded anticodons potentially matching quadruplet codons (tetracodons, codons expanded by a fourth silent position, forming tetragenes (predicted by alignment analyses of Drosophila mitochondrial genomes)). Tetracodon numbers coevolve with expanded tRNA sidearm loops. Sidearm coevolution with amino acid usages and tetragenes occurs for putative anticodons in 5' and 3' sidearms loops (D and TΨC loops, respectively), are stronger for the D-loop. Results slightly favour isolated stem-loops upon crossover hypotheses. An alternative hypothesis, that patterns observed for sidearm 'anticodons' do not imply translational activity, but recognition signals for tRNA synthetases that aminoacylate tRNAs, is incompatible with tetracodon/tetra-anticodon coevolution. Hence analyses strengthen translational hypotheses for tRNA sidearm anticodons, tetragenes, and antisense tRNAs.
Collapse
Affiliation(s)
- Hervé Seligmann
- National Natural History Museum Collections, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; Department of Life Sciences, Ben Gurion University, 84105 Beer Sheva, Israel.
| |
Collapse
|
39
|
Seligmann H. Pocketknife tRNA hypothesis: Anticodons in mammal mitochondrial tRNA side-arm loops translate proteins? Biosystems 2013; 113:165-76. [DOI: 10.1016/j.biosystems.2013.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
|
40
|
Zuo Z, Peng D, Yin X, Zhou X, Cheng H, Zhou R. Genome-wide analysis reveals origin of transfer RNA genes from tRNA halves. Mol Biol Evol 2013; 30:2087-98. [PMID: 23744908 DOI: 10.1093/molbev/mst107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transfer RNAs (tRNAs) play an important role linking mitochondrial RNA and amino acids during protein biogenesis. Four types of tRNA genes have been identified in living organisms. However, the evolutionary origin of tRNAs remains largely unknown. In this article, we conduct a deep sequence analysis of diverse genomes that cover all three domains of life to unveil the evolutionary history of tRNA genes from tRNA halves. tRNA half homologs were detected in diverse organisms, and some of them were expressed in mouse tissues. Continuous tRNA genes have a conserved pattern similar to indels, which is, more closely flanking regions have higher single nucleotide substitution rates, whereas tRNA half homologs do not have this pattern. In addition, tRNAs tend to break into tRNA halves when tissues are incubated in vitro, the tendency of tRNA to break into tRNA halves may be a "side-effect" of tRNA genes evolving from tRNA halves. These results suggest that modern tRNAs originated from tRNA halves through a repeat element-mediated mechanism. These findings provide insight into the evolutionary origin of tRNA genes.
Collapse
Affiliation(s)
- Zhixiang Zuo
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Di Giulio M. A polyphyletic model for the origin of tRNAs has more support than a monophyletic model. J Theor Biol 2013; 318:124-8. [DOI: 10.1016/j.jtbi.2012.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 11/16/2022]
|
42
|
The ‘recently’ split transfer RNA genes may be close to merging the two halves of the tRNA rather than having just separated them. J Theor Biol 2012; 310:1-2. [DOI: 10.1016/j.jtbi.2012.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 11/16/2022]
|
43
|
Bernhardt HS. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others)(a). Biol Direct 2012; 7:23. [PMID: 22793875 PMCID: PMC3495036 DOI: 10.1186/1745-6150-7-23] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/11/2012] [Indexed: 01/16/2023] Open
Abstract
The problems associated with the RNA world hypothesis are well known. In the following I discuss some of these difficulties, some of the alternative hypotheses that have been proposed, and some of the problems with these alternative models. From a biosynthetic - as well as, arguably, evolutionary - perspective, DNA is a modified RNA, and so the chicken-and-egg dilemma of "which came first?" boils down to a choice between RNA and protein. This is not just a question of cause and effect, but also one of statistical likelihood, as the chance of two such different types of macromolecule arising simultaneously would appear unlikely. The RNA world hypothesis is an example of a 'top down' (or should it be 'present back'?) approach to early evolution: how can we simplify modern biological systems to give a plausible evolutionary pathway that preserves continuity of function? The discovery that RNA possesses catalytic ability provides a potential solution: a single macromolecule could have originally carried out both replication and catalysis. RNA - which constitutes the genome of RNA viruses, and catalyzes peptide synthesis on the ribosome - could have been both the chicken and the egg! However, the following objections have been raised to the RNA world hypothesis: (i) RNA is too complex a molecule to have arisen prebiotically; (ii) RNA is inherently unstable; (iii) catalysis is a relatively rare property of long RNA sequences only; and (iv) the catalytic repertoire of RNA is too limited. I will offer some possible responses to these objections in the light of work by our and other labs. Finally, I will critically discuss an alternative theory to the RNA world hypothesis known as 'proteins first', which holds that proteins either preceded RNA in evolution, or - at the very least - that proteins and RNA coevolved. I will argue that, while theoretically possible, such a hypothesis is probably unprovable, and that the RNA world hypothesis, although far from perfect or complete, is the best we currently have to help understand the backstory to contemporary biology.
Collapse
Affiliation(s)
- Harold S Bernhardt
- Department of Biochemistry, University of Otago, P,O, Box 56, Dunedin, New Zealand.
| |
Collapse
|
44
|
The origin of the tRNA molecule: Independent data favor a specific model of its evolution. Biochimie 2012; 94:1464-6. [DOI: 10.1016/j.biochi.2012.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
|
45
|
The Origin of the 5S Ribosomal RNA Molecule Could Have Been Caused by a Single Inverse Duplication: Strong Evidence from Its Sequences. J Mol Evol 2012; 74:170-86. [DOI: 10.1007/s00239-012-9497-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
46
|
Popow J, Schleiffer A, Martinez J. Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 2012; 69:2657-70. [PMID: 22426497 PMCID: PMC3400036 DOI: 10.1007/s00018-012-0944-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/01/2012] [Accepted: 02/13/2012] [Indexed: 12/29/2022]
Abstract
The discovery of discontiguous tRNA genes triggered studies dissecting the process of tRNA splicing. As a result, we have gained detailed mechanistic knowledge on enzymatic removal of tRNA introns catalyzed by endonuclease and ligase proteins. In addition to the elucidation of tRNA processing, these studies facilitated the discovery of additional functions of RNA ligases such as RNA repair and non-conventional mRNA splicing events. Recently, the identification of a new type of RNA ligases in bacteria, archaea, and humans closed a long-standing gap in the field of tRNA processing. This review summarizes past and recent findings in the field of tRNA splicing with a focus on RNA ligation as it preferentially occurs in archaea and humans. In addition to providing an integrated view of the types and phyletic distribution of RNA ligase proteins known to date, this survey also aims at highlighting known and potential accessory biological functions of RNA ligases.
Collapse
Affiliation(s)
- Johannes Popow
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | | | | |
Collapse
|
47
|
The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis. J Mol Evol 2012; 74:1-34. [PMID: 22210458 DOI: 10.1007/s00239-011-9480-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 12/12/2011] [Indexed: 12/20/2022]
Abstract
The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation.
Collapse
|
48
|
Unassigned codons, nonsense suppression, and anticodon modifications in the evolution of the genetic code. J Mol Evol 2011; 73:59-69. [PMID: 22076654 DOI: 10.1007/s00239-011-9470-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
Abstract
The origin of the genetic code is a central open problem regarding the early evolution of life. Here, we consider two undeveloped but important aspects of possible scenarios for the evolutionary pathway of the translation machinery: the role of unassigned codons in early stages of the code and the incorporation of tRNA anticodon modifications. As the first codons started to encode amino acids, the translation machinery likely was faced with a large number of unassigned codons. Current molecular scenarios for the evolution of the code usually assume the very rapid assignment of all codons before all 20 amino acids became encoded. We show that the phenomenon of nonsense suppression as observed in current organisms allows for a scenario in which many unassigned codons persisted throughout most of the evolutionary development of the code. In addition, we demonstrate that incorporation of anticodon modifications at a late stage is feasible. The wobble rules allow a set of 20 tRNAs fully lacking anticodon modifications to encode all 20 canonical amino acids. These observations have implications for the biochemical plausibility of early stages in the evolution of the genetic code predating tRNA anticodon modifications and allow for effective translation by a relatively small and simple early tRNA set.
Collapse
|
49
|
Fujishima K, Sugahara J, Miller CS, Baker BJ, Di Giulio M, Takesue K, Sato A, Tomita M, Banfield JF, Kanai A. A novel three-unit tRNA splicing endonuclease found in ultrasmall Archaea possesses broad substrate specificity. Nucleic Acids Res 2011; 39:9695-704. [PMID: 21880595 PMCID: PMC3239211 DOI: 10.1093/nar/gkr692] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
tRNA splicing endonucleases, essential enzymes found in Archaea and Eukaryotes, are involved in the processing of pre-tRNA molecules. In Archaea, three types of splicing endonuclease [homotetrameric: α4, homodimeric: α2, and heterotetrameric: (αβ)2] have been identified, each representing different substrate specificity during the tRNA intron cleavage. Here, we discovered a fourth type of archaeal tRNA splicing endonuclease (ε2) in the genome of the acidophilic archaeon Candidatus Micrarchaeum acidiphilum, referred to as ARMAN-2 and its closely related species, ARMAN-1. The enzyme consists of two duplicated catalytic units and one structural unit encoded on a single gene, representing a novel three-unit architecture. Homodimeric formation was confirmed by cross-linking assay, and site-directed mutagenesis determined that the conserved L10-pocket interaction between catalytic and structural unit is necessary for the assembly. A tRNA splicing assay reveal that ε2 endonuclease cleaves both canonical and non-canonical bulge–helix–bulge motifs, similar to that of (αβ)2 endonuclease. Unlike other ARMAN and Euryarchaeota, tRNAs found in ARMAN-2 are highly disrupted by introns at various positions, which again resemble the properties of archaeal species with (αβ)2 endonuclease. Thus, the discovery of ε2 endonuclease in an archaeon deeply branched within Euryarchaeota represents a new example of the coevolution of tRNA and their processing enzymes.
Collapse
Affiliation(s)
- Kosuke Fujishima
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Erives A. A model of proto-anti-codon RNA enzymes requiring L-amino acid homochirality. J Mol Evol 2011; 73:10-22. [PMID: 21779963 PMCID: PMC3223571 DOI: 10.1007/s00239-011-9453-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/07/2011] [Indexed: 01/26/2023]
Abstract
All living organisms encode the 20 natural amino acid units of polypeptides using a universal scheme of triplet nucleotide "codons". Disparate features of this codon scheme are potentially informative of early molecular evolution: (i) the absence of any codons for D-amino acids; (ii) the odd combination of alternate codon patterns for some amino acids; (iii) the confinement of synonymous positions to a codon's third nucleotide; (iv) the use of 20 specific amino acids rather than a number closer to the full coding potential of 64; and (v) the evolutionary relationship of patterns in stop codons to amino acid codons. Here I propose a model for an ancestral proto-anti-codon RNA (pacRNA) auto-aminoacylation system and show that pacRNAs would naturally manifest features of the codon table. I show that pacRNAs could implement all the steps for auto-aminoacylation: amino acid coordination, intermediate activation of the amino acid by the 5'-end of the pacRNA, and 3'-aminoacylation of the pacRNA. The anti-codon cradles of pacRNAs would have been able to recognize and coordinate only a small number of L-amino acids via hydrogen bonding. A need for proper spatial coordination would have limited the number of chargeable amino acids for all anti-codon sequences, in addition to making some anti-codon sequences unsuitable. Thus, the pacRNA model implies that the idiosyncrasies of the anti-codon table and L-amino acid homochirality co-evolved during a single evolutionary period. These results further imply that early life consisted of an aminoacylated RNA world with a richer enzymatic potential than ribonucleotides alone.
Collapse
Affiliation(s)
- Albert Erives
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|