1
|
Lopez-Rodriguez R, Lantero E, Blanco-Kelly F, Avila-Fernandez A, Martin Merida I, Del Pozo-Valero M, Perea-Romero I, Zurita O, Jiménez-Rolando B, Swafiri ST, Riveiro-Alvarez R, Trujillo-Tiebas MJ, Carreño Salas E, García-Sandoval B, Corton M, Ayuso C. RPE65-related retinal dystrophy: Mutational and phenotypic spectrum in 45 affected patients. Exp Eye Res 2021; 212:108761. [PMID: 34492281 DOI: 10.1016/j.exer.2021.108761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Biallelic pathogenic RPE65 variants are related to a spectrum of clinically overlapping inherited retinal dystrophies (IRD). Most affected individuals progress to severe disease, with 50% of patients becoming legally blind by 20 years of age. Deeper knowledge of the mutational spectrum and the phenotype-genotype correlation in RPE65-related IRD is needed. PATIENTS AND METHODS Forty-five affected subjects from 27 unrelated families with a clinical diagnosis of RPE65-related IRD were included. Clinical evaluation consisted of self-reported ophthalmological history and objective ophthalmological examination. Patients' genotype was classified according to variant class (truncating or missense) or to variant location at different protein domains. The main phenotypic outcome measure was age at onset (AAO) of symptomatic disease and a Kaplan-Meier analysis of disease symptom event-free survival was performed. RESULTS Twenty-nine different RPE65 variants were identified in our cohort, 7 of them novel. Patients carrying two missense alleles showed a later disease onset than those with 1 or 2 truncating variants (log-rank test p <0.05). While 60% of patients carrying a missense/missense genotype presented symptoms before or during the first year of life, almost all patients with at least 1 truncating allele (91%) had an AAO ≤1 year (p <0.05). CONCLUSION Our findings suggest an association between the type of RPE65 variant carried and AAO. These findings provide useful data on RPE65-associated IRD phenotypes and may help improve clinical and therapeutic management of these patients.
Collapse
Affiliation(s)
- Rosario Lopez-Rodriguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Esther Lantero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Almudena Avila-Fernandez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Inmaculada Martin Merida
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Marta Del Pozo-Valero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Irene Perea-Romero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Olga Zurita
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Belén Jiménez-Rolando
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital (FJD), Madrid, Spain
| | - Saoud Tahsin Swafiri
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Rosa Riveiro-Alvarez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - María José Trujillo-Tiebas
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Ester Carreño Salas
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital (FJD), Madrid, Spain
| | - Blanca García-Sandoval
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital (FJD), Madrid, Spain
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.
| |
Collapse
|
3
|
Jin M, Yuan Q, Li S, Travis GH. Role of LRAT on the retinoid isomerase activity and membrane association of Rpe65. J Biol Chem 2007; 282:20915-24. [PMID: 17504753 PMCID: PMC2747659 DOI: 10.1074/jbc.m701432200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Absorption of a photon by a vertebrate opsin pigment induces 11-cis to all-trans isomerization of its retinaldehyde chromophore. Restoration of light sensitivity to the bleached opsin requires chemical re-isomerization of the chromophore via an enzyme pathway called the visual cycle. The retinoid isomerase in this pathway is Rpe65, a membrane-associated protein in the retinal pigment epithelium (RPE) with no predicted membrane-spanning segments. It has been suggested that Rpe65 is S-palmitoylated by lecithin:retinol acyl transferase (LRAT) on Cys(231), Cys(329), and Cys(330), and that this palmitoylation is required for isomerase activity and the association of Rpe65 with membranes. Here we show that the affinity of Rpe65 for membranes is similar in wild-type and lrat(-/-) mice. The isomerase activity of Rpe65 is also similar in both strains when all-trans-retinyl palmitate is used as substrate. With all-trans-retinol substrate, isomerase activity is present in wild-type but undetectable in RPE homogenates from lrat(-/-) mice. Substitution of Cys(231), Cys(329), and Cys(330) with Ser or Ala did not affect the affinity of Rpe65 for membranes. Further, these Cys residues are not palmitoylated in Rpe65 by mass spectrometric analysis. Global inhibition of protein palmitoylation by 2-bromopalmitate did not affect the solubility or isomerase activity of Rpe65. Finally, we show that soluble and membrane-associated Rpe65 possesses similar isomerase specific activities. These results indicate that LRAT is not required for isomerase activity beyond synthesis of retinyl-ester substrate, and that the association of Rpe65 with membranes is neither dependent upon LRAT nor the result of S-palmitoylation. The affinity of Rpe65 for membranes is probably an intrinsic feature of this protein.
Collapse
Affiliation(s)
- Minghao Jin
- Jules Stein Eye Institute, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
| | - Quan Yuan
- Jules Stein Eye Institute, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
| | - Songhua Li
- Jules Stein Eye Institute, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
| | - Gabriel H. Travis
- Jules Stein Eye Institute, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
- The Charles Kenneth Feldman and Jules & Doris Stein Research to Prevent Blindness Professor. To whom correspondence should be addressed: Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095. Tel.: 310-267-2673; E-mail:
| |
Collapse
|
4
|
Guo H, Zheng C, Gaillard ER. Computational studies for the structure and function of mRPE65. J Theor Biol 2006; 245:312-8. [PMID: 17123547 PMCID: PMC7094118 DOI: 10.1016/j.jtbi.2006.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/18/2006] [Accepted: 10/02/2006] [Indexed: 11/19/2022]
Abstract
The mRPE65 protein is one form of the RPE65 protein and plays a very important role in the visual cycle. However, its 3D structure and detailed mechanism of function are still unclear because of difficulties with isolation and crystallization. This computational study reports a model for the mRPE65 protein structure derived from a model for sRPE65. The natural substrate for RPE65 has been shown to be a retinyl ester and, by utilizing the Autodock and the Ligplot programs, the interactions between the ester and the protein as well as the effects of several mutations on these interactions are studied. Finally, the position of the binding site is proposed based on an iterative process and the effects of the mutations on the binding site are also discussed.
Collapse
|