1
|
Ciupe SM, Conway JM. Incorporating Intracellular Processes in Virus Dynamics Models. Microorganisms 2024; 12:900. [PMID: 38792730 PMCID: PMC11124127 DOI: 10.3390/microorganisms12050900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In-host models have been essential for understanding the dynamics of virus infection inside an infected individual. When used together with biological data, they provide insight into viral life cycle, intracellular and cellular virus-host interactions, and the role, efficacy, and mode of action of therapeutics. In this review, we present the standard model of virus dynamics and highlight situations where added model complexity accounting for intracellular processes is needed. We present several examples from acute and chronic viral infections where such inclusion in explicit and implicit manner has led to improvement in parameter estimates, unification of conclusions, guidance for targeted therapeutics, and crossover among model systems. We also discuss trade-offs between model realism and predictive power and highlight the need of increased data collection at finer scale of resolution to better validate complex models.
Collapse
Affiliation(s)
- Stanca M. Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Jessica M. Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Penn State University, State College, PA 16802, USA
| |
Collapse
|
2
|
Aljahdaly NH, Alharbey RA, Aljohani AS. Theoretical study of diffusive model of HIV-1 infection and its analytical solution. PLoS One 2023; 18:e0283659. [PMID: 37948418 PMCID: PMC10637654 DOI: 10.1371/journal.pone.0283659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 11/12/2023] Open
Abstract
T his article studied a mathematical model for the diffusive human immunodeficiency virus-type 1 (HIV-1) infection combining with stem cell therapy. The HIV-1 infection is a chronic disease and the viral replication continues if the patient stopes use the antiretroviral therapy (cART). Therefore, it is important to seek the cure of HIV-1 infection and some medical trials showed the cure by stem cell therapy and there are others failure to achieve the cure of HIV-1 with same treatments. The novelty of this paper is constructing a mathematical model with adding diffusion terms to study the effect of spread of virus and other cells in the body. Theoretical analysis such as boundedness, positivity, stability (local/global) of the HIV-1 model is presented. The model is solved analytically by the tanh expansion method. The results show that the tanh expansion method is a very useful technique, that can give a good prediction of the effect of stem cell therapy on infected cells on the spread of the virus. The results further demonstrated that the best way to control the disease is by limiting the spread of the virus; more so than the spread of other components.
Collapse
Affiliation(s)
- Noufe H. Aljahdaly
- Mathematics Department, Faculty of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - R. A. Alharbey
- Department of Mathematics, Faculty of Science, Al-Sulymania Womenans Campus, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Ahlam S. Aljohani
- Mathematics Department, Faculty of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| |
Collapse
|
3
|
Barakat MA, Hyder AA, Almoneef AA. A novel HIV model through fractional enlarged integral and differential operators. Sci Rep 2023; 13:7764. [PMID: 37173374 PMCID: PMC10182053 DOI: 10.1038/s41598-023-34280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This article presents a novel mathematical fractional model to examine the transmission of HIV. The new HIV model is built using recently fractional enlarged differential and integral operators. The existence and uniqueness findings for the suggested fractional HIV model are investigated using Leray-Schauder nonlinear alternative (LSNA) and Banach's fixed point (BFP) theorems. Furthermore, multiple types of Ulam stability (U-S) are created for the fractional model of HIV. It is straightforward to identify that the gained findings may be decreased to many results obtained in former works of literature.
Collapse
Affiliation(s)
- M A Barakat
- Department of Computer Science, University College of Al Wajh, University of Tabuk, Tabuk, Saudi Arabia.
- Department of Mathematics, Faculty of Sciences, Al-Azhar University, Assiut, Egypt.
| | - Abd-Allah Hyder
- Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
| | - Areej A Almoneef
- Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| |
Collapse
|
4
|
Korosec CS, Betti MI, Dick DW, Ooi HK, Moyles IR, Wahl LM, Heffernan JM. Multiple cohort study of hospitalized SARS-CoV-2 in-host infection dynamics: Parameter estimates, identifiability, sensitivity and the eclipse phase profile. J Theor Biol 2023; 564:111449. [PMID: 36894132 PMCID: PMC9990894 DOI: 10.1016/j.jtbi.2023.111449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
Within-host SARS-CoV-2 modelling studies have been published throughout the COVID-19 pandemic. These studies contain highly variable numbers of individuals and capture varying timescales of pathogen dynamics; some studies capture the time of disease onset, the peak viral load and subsequent heterogeneity in clearance dynamics across individuals, while others capture late-time post-peak dynamics. In this study, we curate multiple previously published SARS-CoV-2 viral load data sets, fit these data with a consistent modelling approach, and estimate the variability of in-host parameters including the basic reproduction number, R0, as well as the best-fit eclipse phase profile. We find that fitted dynamics can be highly variable across data sets, and highly variable within data sets, particularly when key components of the dynamic trajectories (e.g. peak viral load) are not represented in the data. Further, we investigated the role of the eclipse phase time distribution in fitting SARS-CoV-2 viral load data. By varying the shape parameter of an Erlang distribution, we demonstrate that models with either no eclipse phase, or with an exponentially-distributed eclipse phase, offer significantly worse fits to these data, whereas models with less dispersion around the mean eclipse time (shape parameter two or more) offered the best fits to the available data across all data sets used in this work. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".
Collapse
Affiliation(s)
- Chapin S Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada; Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - Matthew I Betti
- Department of Mathematics and Computer Science, Mount Allison University, 62 York St, Sackville, E4L 1E2, NB, Canada.
| | - David W Dick
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada; Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - Hsu Kiang Ooi
- Digital Technologies Research Centre, National Research Council Canada, 222 College Street, Toronto, M5T 3J1, ON, Canada.
| | - Iain R Moyles
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada; Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - Lindi M Wahl
- Mathematics, Western University, 1151 Richmond St, London, N6A 5B7, ON, Canada.
| | - Jane M Heffernan
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada; Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| |
Collapse
|
5
|
Hattaf K, El Karimi MI, Mohsen AA, Hajhouji Z, El Younoussi M, Yousfi N. Mathematical Modeling and Analysis of the Dynamics of RNA Viruses in Presence of Immunity and Treatment: A Case Study of SARS-CoV-2. Vaccines (Basel) 2023; 11:vaccines11020201. [PMID: 36851079 PMCID: PMC9959189 DOI: 10.3390/vaccines11020201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The emergence of novel RNA viruses like SARS-CoV-2 poses a greater threat to human health. Thus, the main objective of this article is to develop a new mathematical model with a view to better understand the evolutionary behavior of such viruses inside the human body and to determine control strategies to deal with this type of threat. The developed model takes into account two modes of transmission and both classes of infected cells that are latently infected cells and actively infected cells that produce virus particles. The cure of infected cells in latent period as well as the lytic and non-lytic immune response are considered into the model. We first show that the developed model is well-posed from the biological point of view by proving the non-negativity and boundedness of model's solutions. Our analytical results show that the dynamical behavior of the model is fully determined by two threshold parameters one for viral infection and the other for humoral immunity. The effect of antiviral treatment is also investigated. Furthermore, numerical simulations are presented in order to illustrate our analytical results.
Collapse
Affiliation(s)
- Khalid Hattaf
- Equipe de Recherche en Modélisation et Enseignement des Mathématiques (ERMEM), Centre Régional des Métiers de l’Education et de la Formation (CRMEF), Derb Ghalef, Casablanca 20340, Morocco
- Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’Sick, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco
- Correspondence:
| | - Mly Ismail El Karimi
- Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’Sick, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco
| | - Ahmed A. Mohsen
- Department of Mathematics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad 10071, Iraq
- Ministry of Education, Baghdad 10071, Iraq
| | - Zakaria Hajhouji
- Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’Sick, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco
| | - Majda El Younoussi
- Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’Sick, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco
| | - Noura Yousfi
- Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’Sick, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco
| |
Collapse
|
6
|
Hyder AA, Barakat MA, Rizk D, Shah R, Nonlaopon K. Study of HIV model via recent improved fractional differential and integral operators. AIMS MATHEMATICS 2023; 8:1656-1671. [DOI: 10.3934/math.2023084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
<abstract><p>In this article, a new fractional mathematical model is presented to investigate the contagion of the human immunodeficiency virus (HIV). This model is constructed via recent improved fractional differential and integral operators. Other operators like Caputo, Riemann-Liouville, Katugampola, Jarad and Hadamard are being extended and generalized by these improved fractional differential and integral operators. Banach's and Leray-Schauder nonlinear alternative fixed point theorems are utilized to examine the existence and uniqueness results of the proposed fractional HIV model. Moreover, different kinds of Ulam stability for the fractional HIV model are established. It is simple to recognize that the extracted results can be reduced to some results acquired in multiple works of literature.</p></abstract>
Collapse
Affiliation(s)
- Abd-Allah Hyder
- Department of Mathematics, College of Science, King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Al-Azhar University, Cairo 11371, Egypt
| | - Mohamed A. Barakat
- Department of Computer Science, College of Al Wajh, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Mathematics, Faculty of Sciences, Al-Azhar University, Assiut 71524, Egypt
| | - Doaa Rizk
- Department of Mathematics, College of Science and Arts, Qassim University, Al-Asyah, Saudi Arabia
| | - Rasool Shah
- Department of Mathematics, Abdul Wali khan university, Mardan 23200, Pakistan
| | - Kamsing Nonlaopon
- Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
7
|
Liao M, Liu Y, Liu S, Meyad AM. Stability and Hopf bifurcation of HIV-1 model with Holling II infection rate and immune delay. JOURNAL OF BIOLOGICAL DYNAMICS 2022; 16:397-411. [PMID: 33683178 DOI: 10.1080/17513758.2021.1895334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
This paper aims to analyse stability and Hopf bifurcation of the HIV-1 model with immune delay under the functional response of the Holling II type. The global stability analysis has been considered by Lyapunov-LaSalle theorem. And stability and the sufficient condition for the existence of Hopf Bifurcation of the infected equilibrium of the HIV-1 model with immune response are also studied. Some numerical simulations verify the above results. Finally, we propose a novel three dimension system to the future study.
Collapse
Affiliation(s)
- Maoxin Liao
- School of Mathematics and Physics, University of South China, Hengyang, People's Republic of China
| | - Yanjin Liu
- School of Mathematics and Physics, University of South China, Hengyang, People's Republic of China
| | - Shinan Liu
- School of Mathematics and Physics, University of South China, Hengyang, People's Republic of China
| | - Ali M Meyad
- School of Public Finance and Taxation, Southwestern University of Finance and Economics, Chengdu, People's Republic of China
| |
Collapse
|
8
|
Kongson J, Thaiprayoon C, Neamvonk A, Alzabut J, Sudsutad W. Investigation of fractal-fractional HIV infection by evaluating the drug therapy effect in the Atangana-Baleanu sense. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:10762-10808. [PMID: 36124569 DOI: 10.3934/mbe.2022504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, we apply the fractal-fractional derivative in the Atangana-Baleanu sense to a model of the human immunodeficiency virus infection of CD$ 4^{+} $ T-cells in the presence of a reverse transcriptase inhibitor, which occurs before the infected cell begins producing the virus. The existence and uniqueness results obtained by applying Banach-type and Leray-Schauder-type fixed-point theorems for the solution of the suggested model are established. Stability analysis in the context of Ulam's stability and its various types are investigated in order to ensure that a close exact solution exists. Additionally, the equilibrium points and their stability are analyzed by using the basic reproduction number. Three numerical algorithms are provided to illustrate the approximate solutions by using the Newton polynomial approach, the Adam-Bashforth method and the predictor-corrector technique, and a comparison between them is presented. Furthermore, we present the results of numerical simulations in the form of graphical figures corresponding to different fractal dimensions and fractional orders between zero and one. We analyze the behavior of the considered model for the provided values of input factors. As a result, the behavior of the system was predicted for various fractal dimensions and fractional orders, which revealed that slight changes in the fractal dimensions and fractional orders had no impact on the function's behavior in general but only occur in the numerical simulations.
Collapse
Affiliation(s)
- Jutarat Kongson
- Research Group of Theoretical and Computation in Applied Science, Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Chatthai Thaiprayoon
- Research Group of Theoretical and Computation in Applied Science, Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Apichat Neamvonk
- Research Group of Theoretical and Computation in Applied Science, Department of Mathematics, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Jehad Alzabut
- Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Department of Industrial Engineering, OSTİM Technical University, 06374 Ankara, Turkey
| | - Weerawat Sudsutad
- Department of Statistics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| |
Collapse
|
9
|
Ma X, Zhang Y, Chen Y. Stability and bifurcation analysis of an HIV-1 infection model with a general incidence and CTL immune response. JOURNAL OF BIOLOGICAL DYNAMICS 2021; 15:367-394. [PMID: 34251981 DOI: 10.1080/17513758.2021.1950224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
In this paper, with eclipse stage in consideration, we propose an HIV-1 infection model with a general incidence rate and CTL immune response. We first study the existence and local stability of equilibria, which is characterized by the basic infection reproduction number R0 and the basic immunity reproduction number R1. The local stability analysis indicates the occurrence of transcritical bifurcations of equilibria. We confirm the bifurcations at the disease-free equilibrium and the infected immune-free equilibrium with transmission rate and the decay rate of CTLs as bifurcation parameters, respectively. Then we apply the approach of Lyapunov functions to establish the global stability of the equilibria, which is determined by the two basic reproduction numbers. These theoretical results are supported with numerical simulations. Moreover, we also identify the high sensitivity parameters by carrying out the sensitivity analysis of the two basic reproduction numbers to the model parameters.
Collapse
Affiliation(s)
- Xinsheng Ma
- School of Science and Technology, Zhejiang International Studies University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuhuai Zhang
- College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, People's Republic of China
| | - Yuming Chen
- Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
10
|
Jyoti Nath B, Dehingia K, Kumar Sarmah H. On dynamics of an HIV pathogenesis model with full logistic target cell growth and cure rate. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2020. [DOI: 10.18311/ajprhc/2020/25775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Ahmed N, Elsonbaty A, Adel W, Baleanu D, Rafiq M. Stability analysis and numerical simulations of spatiotemporal HIV CD4+ T cell model with drug therapy. CHAOS (WOODBURY, N.Y.) 2020; 30:083122. [PMID: 32872796 DOI: 10.1063/5.0010541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
In this study, an extended spatiotemporal model of a human immunodeficiency virus (HIV) CD4+ T cell with a drug therapy effect is proposed for the numerical investigation. The stability analysis of equilibrium points is carried out for temporal and spatiotemporal cases where stability regions in the space of parameters for each case are acquired. Three numerical techniques are used for the numerical simulations of the proposed HIV reaction-diffusion system. These techniques are the backward Euler, Crank-Nicolson, and a proposed structure preserving an implicit technique. The proposed numerical method sustains all the important characteristics of the proposed HIV model such as positivity of the solution and stability of equilibria, whereas the other two methods have failed to do so. We also prove that the proposed technique is positive, consistent, and Von Neumann stable. The effect of different values for the parameters is investigated through numerical simulations by using the proposed method. The stability of the proposed model of the HIV CD4+ T cell with the drug therapy effect is also analyzed.
Collapse
Affiliation(s)
- Nauman Ahmed
- Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan
| | - Amr Elsonbaty
- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Waleed Adel
- Department of Mathematics and Engineering Physics, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Dumitru Baleanu
- Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, Turkey
| | - Muhammad Rafiq
- Faculty of Engineering, University of Central Punjab, Lahore 54770, Pakistan
| |
Collapse
|
12
|
Hattaf K, Dutta H. Modeling the dynamics of viral infections in presence of latently infected cells. CHAOS, SOLITONS, AND FRACTALS 2020; 136:109916. [PMID: 32518473 PMCID: PMC7271877 DOI: 10.1016/j.chaos.2020.109916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 05/21/2023]
Abstract
The study aims to develop a new mathematical model in order to explain the dynamics of viral infections in vivo such as HIV infection. The model includes three classes of cells, takes into account the cure of infected cells in latent period and also incorporates three modes of transmission. The mention modes are modeled by three general incidence functions covering several special cases available in the literature. The basic properties of the model as well as its stability analysis have been carried out rigorously. Further, an application is given and also numerical simulation results have been incorporated supporting the analytical results.
Collapse
Affiliation(s)
- Khalid Hattaf
- Centre Régional des Métiers de l’Education et de la Formation (CRMEF), 20340 Derb Ghalef, Casablanca, Morocco
- Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’sik, Hassan II University of Casablanca, P.O Box 7955 Sidi Othman, Casablanca, Morocco
| | - Hemen Dutta
- Department of Mathematics, Gauhati University, Guwahati 781014, India
| |
Collapse
|
13
|
Abstract
This paper is devoted to the study of the stability of a CD[Formula: see text] T cell viral infection model with diffusion. First, we discuss the well-posedness of the model and the existence of endemic equilibrium. Second, by analyzing the roots of the characteristic equation, we establish the local stability of the virus-free equilibrium. Furthermore, by constructing suitable Lyapunov functions, we show that the virus-free equilibrium is globally asymptotically stable if the threshold value [Formula: see text]; the endemic equilibrium is globally asymptotically stable if [Formula: see text] and [Formula: see text]. Finally, we give an application and numerical simulations to illustrate the main results.
Collapse
Affiliation(s)
- Zhiting Xu
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P. R. China
| | - Youqing Xu
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P. R. China
| |
Collapse
|
14
|
Jiang C, Wang K, Song L. Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2018; 14:1233-1246. [PMID: 29161858 DOI: 10.3934/mbe.2017063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we formulate a virus dynamics model with the recruitment of immune responses, saturation effects and an intracellular time delay. With the help of uniform persistence theory and Lyapunov method, we show that the global stability of the model is totally determined by the basic reproductive number R0. Furthermore, we analyze the effects of the recruitment of immune responses on virus infection by numerical simulation. The results show ignoring the recruitment of immune responses will result in overestimation of the basic reproductive number and the severity of viral infection.
Collapse
Affiliation(s)
- Cuicui Jiang
- Department of Mathematics, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - Kaifa Wang
- Department of Mathematics, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - Lijuan Song
- Department of Mathematics, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
15
|
Bai F, Huff KES, Allen LJS. The effect of delay in viral production in within-host models during early infection. JOURNAL OF BIOLOGICAL DYNAMICS 2018; 13:47-73. [PMID: 30021482 DOI: 10.1080/17513758.2018.1498984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Delay in viral production may have a significant impact on the early stages of infection. During the eclipse phase, the time from viral entry until active production of viral particles, no viruses are produced. This delay affects the probability that a viral infection becomes established and timing of the peak viral load. Deterministic and stochastic models are formulated with either multiple latent stages or a fixed delay for the eclipse phase. The deterministic model with multiple latent stages approaches in the limit the model with a fixed delay as the number of stages approaches infinity. The deterministic model framework is used to formulate continuous-time Markov chain and stochastic differential equation models. The probability of a minor infection with rapid viral clearance as opposed to a major full-blown infection with a high viral load is estimated from a branching process approximation of the Markov chain model and the results are confirmed through numerical simulations. In addition, parameter values for influenza A are used to numerically estimate the time to peak viral infection and peak viral load for the deterministic and stochastic models. Although the average length of the eclipse phase is the same in each of the models, as the number of latent stages increases, the numerical results show that the time to viral peak and the peak viral load increase.
Collapse
Affiliation(s)
- Fan Bai
- a Department of Mathematics and Statistics, Texas Tech University , Lubbock , TX , USA
| | - Krystin E S Huff
- a Department of Mathematics and Statistics, Texas Tech University , Lubbock , TX , USA
| | - Linda J S Allen
- a Department of Mathematics and Statistics, Texas Tech University , Lubbock , TX , USA
| |
Collapse
|
16
|
Zitzmann C, Kaderali L. Mathematical Analysis of Viral Replication Dynamics and Antiviral Treatment Strategies: From Basic Models to Age-Based Multi-Scale Modeling. Front Microbiol 2018; 9:1546. [PMID: 30050523 PMCID: PMC6050366 DOI: 10.3389/fmicb.2018.01546] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/21/2018] [Indexed: 12/14/2022] Open
Abstract
Viral infectious diseases are a global health concern, as is evident by recent outbreaks of the middle east respiratory syndrome, Ebola virus disease, and re-emerging zika, dengue, and chikungunya fevers. Viral epidemics are a socio-economic burden that causes short- and long-term costs for disease diagnosis and treatment as well as a loss in productivity by absenteeism. These outbreaks and their socio-economic costs underline the necessity for a precise analysis of virus-host interactions, which would help to understand disease mechanisms and to develop therapeutic interventions. The combination of quantitative measurements and dynamic mathematical modeling has increased our understanding of the within-host infection dynamics and has led to important insights into viral pathogenesis, transmission, and disease progression. Furthermore, virus-host models helped to identify drug targets, to predict the treatment duration to achieve cure, and to reduce treatment costs. In this article, we review important achievements made by mathematical modeling of viral kinetics on the extracellular, intracellular, and multi-scale level for Human Immunodeficiency Virus, Hepatitis C Virus, Influenza A Virus, Ebola Virus, Dengue Virus, and Zika Virus. Herein, we focus on basic mathematical models on the population scale (so-called target cell-limited models), detailed models regarding the most important steps in the viral life cycle, and the combination of both. For this purpose, we review how mathematical modeling of viral dynamics helped to understand the virus-host interactions and disease progression or clearance. Additionally, we review different types and effects of therapeutic strategies and how mathematical modeling has been used to predict new treatment regimens.
Collapse
Affiliation(s)
- Carolin Zitzmann
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| | - Lars Kaderali
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
17
|
Nampala H, Luboobi LS, Mugisha JYT, Obua C, Jablonska-Sabuka M. Modelling hepatotoxicity and antiretroviral therapeutic effect in HIV/HBV coinfection. Math Biosci 2018; 302:67-79. [PMID: 29800563 DOI: 10.1016/j.mbs.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 01/08/2023]
Abstract
Enzyme alanine aminotransferase (ALT) elevation which reflects hepatocellular injury is a current challenge in people infected with human immunodeficiency virus (HIV) on antiretroviral therapy (ART). One of the factors that enhance the risk of hepatotoxicity is underlying diseases such as hepatitis caused by hepatitis B virus (HBV). HIV/HBV coinfected patients stand a greater risk of hepatotoxicity because all ART are toxic and liver cells (hepatocytes) that are responsible for metabolising the toxic ART, support all stages of HIV and HBV viral production. Mathematical models coupled with numerical simulations are used in this study with the aim of investigating the optimal combination of ART in HIV/HBV coinfection. Emtricitabine, tenofovir and efavirenz is the optimal combination that maximises the therapeutic effect of therapy and minimises the toxic response to medication in HIV/HBV coinfection.
Collapse
Affiliation(s)
- Hasifa Nampala
- Department of Mathematics, Kyambogo University, P.O Box 1, Kampala, Uganda.
| | | | - Joseph Y T Mugisha
- Department of Mathematics, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Celestino Obua
- Department of Pharmacology and Therapeutics, Makerere University, Kampala, P.O Box 7062, Uganda
| | - Matylda Jablonska-Sabuka
- Department of Computational Engineering and Physics, Lappeenranta University of Technology, Finland
| |
Collapse
|
18
|
Wen B, Wang J, Teng Z. A discrete-time analog for coupled within-host and between-host dynamics in environmentally driven infectious disease. ADVANCES IN DIFFERENCE EQUATIONS 2018; 2018:69. [PMID: 32226450 PMCID: PMC7100524 DOI: 10.1186/s13662-018-1522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 02/09/2018] [Indexed: 05/03/2023]
Abstract
In this paper, we establish a discrete-time analog for coupled within-host and between-host systems for an environmentally driven infectious disease with fast and slow two time scales by using the non-standard finite difference scheme. The system is divided into a fast time system and a slow time system by using the idea of limit equations. For the fast system, the positivity and boundedness of the solutions, the basic reproduction number and the existence for infection-free and unique virus infectious equilibria are obtained, and the threshold conditions on the local stability of equilibria are established. In the slow system, except for the positivity and boundedness of the solutions, the existence for disease-free, unique endemic and two endemic equilibria are obtained, and the sufficient conditions on the local stability for disease-free and unique endemic equilibria are established. To return to the coupling system, the local stability for the virus- and disease-free equilibrium, and virus infectious but disease-free equilibrium is established. The numerical examples show that an endemic equilibrium is locally asymptotically stable and the other one is unstable when there are two endemic equilibria.
Collapse
Affiliation(s)
- Buyu Wen
- College of Mathematics and Systems Science, Xinjiang University, Urumqi, People’s Republic of China
| | - Jianpeng Wang
- College of Mathematics and Systems Science, Xinjiang University, Urumqi, People’s Republic of China
| | - Zhidong Teng
- College of Mathematics and Systems Science, Xinjiang University, Urumqi, People’s Republic of China
| |
Collapse
|
19
|
Garira W. A complete categorization of multiscale models of infectious disease systems. JOURNAL OF BIOLOGICAL DYNAMICS 2017; 11:378-435. [PMID: 28849734 DOI: 10.1080/17513758.2017.1367849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Modelling of infectious disease systems has entered a new era in which disease modellers are increasingly turning to multiscale modelling to extend traditional modelling frameworks into new application areas and to achieve higher levels of detail and accuracy in characterizing infectious disease systems. In this paper we present a categorization framework for categorizing multiscale models of infectious disease systems. The categorization framework consists of five integration frameworks and five criteria. We use the categorization framework to give a complete categorization of host-level immuno-epidemiological models (HL-IEMs). This categorization framework is also shown to be applicable in categorizing other types of multiscale models of infectious diseases beyond HL-IEMs through modifying the initial categorization framework presented in this study. Categorization of multiscale models of infectious disease systems in this way is useful in bringing some order to the discussion on the structure of these multiscale models.
Collapse
Affiliation(s)
- Winston Garira
- a Modelling Health and Environmental Linkages Research Group (MHELRG), Department of Mathematics and Applied Mathematics , University of Venda , Thohoyandou, South Africa
| |
Collapse
|
20
|
Ali N, Zaman G, Abdullah, Alqahtani AM, Alshomrani AS. The Effects of Time Lag and Cure Rate on the Global Dynamics of HIV-1 Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8094947. [PMID: 28691034 PMCID: PMC5485491 DOI: 10.1155/2017/8094947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 01/24/2017] [Accepted: 03/29/2017] [Indexed: 11/18/2022]
Abstract
In this research article, a new mathematical model of delayed differential equations is developed which discusses the interaction among CD4 T cells, human immunodeficiency virus (HIV), and recombinant virus with cure rate. The model has two distributed intracellular delays. These delays denote the time needed for the infection of a cell. The dynamics of the model are completely described by the basic reproduction numbers represented by R0, R1, and R2. It is shown that if R0 < 1, then the infection-free equilibrium is locally as well as globally stable. Similarly, it is proved that the recombinant absent equilibrium is locally as well as globally asymptotically stable if 1 < R0 < R1. Finally, numerical simulations are presented to illustrate our theoretical results. Our obtained results show that intracellular delay and cure rate have a positive role in the reduction of infected cells and the increasing of uninfected cells due to which the infection is reduced.
Collapse
Affiliation(s)
- Nigar Ali
- Department of Mathematics, University of Malakand, Chakdara Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - Gul Zaman
- Department of Mathematics, University of Malakand, Chakdara Dir (L), Khyber Pakhtunkhwa, Pakistan
| | - Abdullah
- Department of Mathematics, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Aisha M. Alqahtani
- Department of Mathematics, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ali Saleh Alshomrani
- Department of Mathematics, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
WANG XIYING, LIU XINZHI, XU WEI, XIE WEICHAU, LIU WANPING. THE DYNAMICS OF HIV MODELS WITH SWITCHING PARAMETERS AND PULSE CONTROL. J BIOL SYST 2017. [DOI: 10.1142/s0218339016500200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper studies some human immunodeficiency virus (HIV) models with switching parameters and pulse control. The classical virus dynamics model is first modified by incorporating switching parameters which are assumed to be time-varying. Some threshold conditions are derived to guarantee the virus elimination by utilizing a Razumikhin-type approach. The results show that the proper switching conditions chosen can increase the counts of CD4+T-cells while reducing viral load. Pulse control strategies are then applied to the above model. More precisely, the treatment strategy and the vaccination strategy are applied to infected cells and uninfected cells, respectively. Each control strategy is analyzed to gauge its success in achieving viral suppression. Numerical simulations are performed to complement the analytical results and motivate future directions.
Collapse
Affiliation(s)
- XIYING WANG
- Department of Mathematics and Statistics, Zhoukou Normal University, Zhoukou, Henan 466001, P. R. China
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario Canada, N2L 3G1, Canada
| | - XINZHI LIU
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario Canada, N2L 3G1, Canada
| | - WEI XU
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, P. R. China
| | - WEI-CHAU XIE
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario Canada, N2L 3G1, Canada
| | - WANPING LIU
- College of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| |
Collapse
|
22
|
Global stability for a class of HIV infection models with cure of infected cells in eclipse stage and CTL immune response. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40435-016-0268-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Wang X, Song X, Tang S, Rong L. Dynamics of an HIV Model with Multiple Infection Stages and Treatment with Different Drug Classes. Bull Math Biol 2016; 78:322-49. [PMID: 26842389 DOI: 10.1007/s11538-016-0145-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023]
Abstract
Highly active antiretroviral therapy can effectively control HIV replication in infected individuals. Some clinical and modeling studies suggested that viral decay dynamics may depend on the inhibited stages of the viral replication cycle. In this paper, we develop a general mathematical model incorporating multiple infection stages and various drug classes that can interfere with specific stages of the viral life cycle. We derive the basic reproductive number and obtain the global stability results of steady states. Using several simple cases of the general model, we study the effect of various drug classes on the dynamics of HIV decay. When drugs are assumed to be 100% effective, drugs acting later in the viral life cycle lead to a faster or more rapid decay in viremia. This is consistent with some patient and experimental data, and also agrees with previous modeling results. When drugs are not 100% effective, the viral decay dynamics are more complicated. Without a second population of long-lived infected cells, the viral load decline can have two phases if drugs act at an intermediate stage of the viral replication cycle. The slopes of viral load decline depend on the drug effectiveness, the death rate of infected cells at different stages, and the transition rate of infected cells from one to the next stage. With a second population of long-lived infected cells, the viral load decline can have three distinct phases, consistent with the observation in patients receiving antiretroviral therapy containing the integrase inhibitor raltegravir. We also fit modeling prediction to patient data under efavirenz (a nonnucleoside reverse-transcriptase inhibitor) and raltegravir treatment. The first-phase viral load decline under raltegravir therapy is longer than that under efavirenz, resulting in a lower viral load at initiation of the second-phase decline in patients taking raltegravir. This explains why patients taking a raltegravir-based therapy were faster to achieve viral suppression than those taking an efavirenz-based therapy. Taken together, this work provides a quantitative and systematic comparison of the effect of different drug classes on HIV decay dynamics and can explain the viral load decline in HIV patients treated with raltegravir-containing regimens.
Collapse
Affiliation(s)
- Xia Wang
- School of Mathematics and Information Sciences, Shaanxi Normal University, Xi'an, 710062, China
- College of Mathematics and Information Science, Xinyang Normal University, Xinyang, 464000, China
| | - Xinyu Song
- College of Mathematics and Information Science, Xinyang Normal University, Xinyang, 464000, China
| | - Sanyi Tang
- School of Mathematics and Information Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Libin Rong
- Department of Mathematics and Statistics, and Center for Biomedical Research, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
24
|
Maziane M, Lotfi EM, Hattaf K, Yousfi N. Dynamics of a Class of HIV Infection Models with Cure of Infected Cells in Eclipse Stage. Acta Biotheor 2015; 63:363-80. [PMID: 26082312 DOI: 10.1007/s10441-015-9263-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/09/2015] [Indexed: 02/07/2023]
Abstract
In this paper, we propose two HIV infection models with specific nonlinear incidence rate by including a class of infected cells in the eclipse phase. The first model is described by ordinary differential equations (ODEs) and generalizes a set of previously existing models and their results. The second model extends our ODE model by taking into account the diffusion of virus. Furthermore, the global stability of both models is investigated by constructing suitable Lyapunov functionals. Finally, we check our theoretical results with numerical simulations.
Collapse
Affiliation(s)
- Mehdi Maziane
- Department of Mathematics and Computer Science, Faculty of Sciences Ben M'sik, Hassan II University, P.O. Box 7955, Sidi Othman, Casablanca, Morocco
| | - El Mehdi Lotfi
- Department of Mathematics and Computer Science, Faculty of Sciences Ben M'sik, Hassan II University, P.O. Box 7955, Sidi Othman, Casablanca, Morocco
| | - Khalid Hattaf
- Department of Mathematics and Computer Science, Faculty of Sciences Ben M'sik, Hassan II University, P.O. Box 7955, Sidi Othman, Casablanca, Morocco.
- Centre Régional des Métiers de l'Education et de la Formation (CRMEF), 20340, Derb Ghalef, Casablanca, Morocco.
| | - Noura Yousfi
- Department of Mathematics and Computer Science, Faculty of Sciences Ben M'sik, Hassan II University, P.O. Box 7955, Sidi Othman, Casablanca, Morocco
| |
Collapse
|
25
|
Sun Q, Min L, Kuang Y. Global stability of infection-free state and endemic infection state of a modified human immunodeficiency virus infection model. IET Syst Biol 2015; 9:95-103. [PMID: 26021330 DOI: 10.1049/iet-syb.2014.0046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study proposes a modified human immunodeficiency virus (HIV) infection differential equation model with a saturated infection rate. This model has an infection-free equilibrium point and an endemic infection equilibrium point. Using Lyapunov functions and LaSalle's invariance principle shows that if the model's basic reproductive number R0 < 1, the infection-free equilibrium point is globally asymptotically stable, otherwise the endemic infection equilibrium point is globally asymptotically stable. It is shown that a forward bifurcation will occur when R0 = 1. The basic reproductive number R0 of the modified model is independent of plasma total CD4⁺ T cell counts and thus the modified model is more reasonable than the original model proposed by Buonomo and Vargas-De-León. Based on the clinical data from HIV drug resistance database of Stanford University, using the proposed model simulates the dynamics of two group patients' anti-HIV infection treatments. The simulation results have shown that the first 4 weeks' treatments made the two group patients' R'0 < 1, respectively. After the period, drug resistance made the two group patients' R'0 > 1. The results explain why the two group patients' mean CD4⁺ T cell counts raised and mean HIV RNA levels declined in the first period, but contrary in the following weeks.
Collapse
Affiliation(s)
- Qilin Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Lequan Min
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Temp AZ 85287-1804, USA
| |
Collapse
|
26
|
Peck KM, Chan CHS, Tanaka MM. Connecting within-host dynamics to the rate of viral molecular evolution. Virus Evol 2015; 1:vev013. [PMID: 27774285 PMCID: PMC5014490 DOI: 10.1093/ve/vev013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Viruses evolve rapidly, providing a unique system for understanding the processes that influence rates of molecular evolution. Neutral theory posits that the evolutionary rate increases linearly with the mutation rate. The occurrence of deleterious mutations causes this relationship to break down at high mutation rates. Previous studies have identified this as an important phenomenon, particularly for RNA viruses which can mutate at rates near the extinction threshold. We propose that in addition to mutation dynamics, viral within-host dynamics can also affect the between-host evolutionary rate. We present an analytical model that predicts the neutral evolution rate for viruses as a function of both within-host parameters and deleterious mutations. To examine the effect of more detailed aspects of the virus life cycle, we also present a computational model that simulates acute virus evolution using target cell-limited dynamics. Using influenza A virus as a case study, we find that our simulation model can predict empirical rates of evolution better than a model lacking within-host details. The analytical model does not perform as well as the simulation model but shows how the within-host basic reproductive number influences evolutionary rates. These findings lend support to the idea that the mutation rate alone is not sufficient to predict the evolutionary rate in viruses, instead calling for improved models that account for viral within-host dynamics.
Collapse
Affiliation(s)
- Kayla M Peck
- Department of Biology, University of North Carolina - Chapel Hill
| | - Carmen H S Chan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia and; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia and; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
27
|
Feng Z, Cen X, Zhao Y, Velasco-Hernandez JX. Coupled within-host and between-host dynamics and evolution of virulence. Math Biosci 2015; 270:204-12. [PMID: 25749184 DOI: 10.1016/j.mbs.2015.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 11/27/2022]
Abstract
Mathematical models coupling within- and between-host dynamics can be helpful for deriving trade-off functions between disease transmission and virulence at the population level. Such functions have been used to study the evolution of virulence and to explore the possibility of a conflict between natural selection at individual and population levels for directly transmitted diseases (Gilchrist and Coombs, 2006). In this paper, a new coupled model for environmentally-driven diseases is analyzed to study similar biological questions. It extends the model in Cen et al. (2014) and Feng et al. (2013) by including the disease-induced host mortality. It is shown that the extended model exhibits similar dynamical behaviors including the possible occurrence of a backward bifurcation. It is also shown that the within-host pathogen load and the disease prevalence at the positive stable equilibrium are increasing functions of the within- and between-host reproduction numbers (Rw0 and Rb0), respectively. Optimal parasite strategies will maximize these reproduction numbers at the two levels, and a conflict may exist between the two levels. Our results highlight the role of inter-dependence of variables and parameters in the fast and slow systems for persistence of infections and evolution of pathogens in an environmentally-driven disease. Our results also demonstrate the importance of incorporating explicit links of the within- and between-host dynamics into the computation of threshold conditions for disease control.
Collapse
Affiliation(s)
- Zhilan Feng
- Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiuli Cen
- Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
| | - Yulin Zhao
- Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
| | | |
Collapse
|
28
|
Modelling Hepatotoxicity of Antiretroviral Therapy in the Liver during HIV Monoinfection. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/659675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver related complications are currently the leading cause of morbidity and mortality among human immunodeficiency virus (HIV) infected individuals. In HIV monoinfected individuals on therapy, liver injury has been associated with the use of antiretroviral agents as most of them exhibit some degree of toxicity. In this study we proposed a mathematical model with the aim of investigating hepatotoxicity of combinational therapy of antiretroviral drugs. Therapy efficacy and toxicity were incorporated in the model as dose-response functions. With the parameter values used in the study, protease inhibitors-based regimens were found to be more toxic than nonnucleoside reverse transcriptase inhibitors-based regimens. In both regimens, the combination of stavudine and zidovudine was the most toxic baseline nucleoside reverse transcriptase inhibitors followed by didanosine with stavudine. However, the least toxic combinations were zidovudine and lamivudine followed by didanosine and lamivudine. The study proposed that, under the same second line regimens, the most toxic first line combination gives the highest viral load and vice versa.
Collapse
|
29
|
Emerging disease dynamics in a model coupling within-host and between-host systems. J Theor Biol 2014; 361:141-51. [PMID: 25093825 DOI: 10.1016/j.jtbi.2014.07.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/01/2014] [Accepted: 07/10/2014] [Indexed: 11/23/2022]
Abstract
Epidemiological models and immunological models have been studied largely independently. However, the two processes (between- and within-host interactions) occur jointly and models that couple the two processes may generate new biological insights. Particularly, the threshold conditions for disease control may be dramatically different when compared with those generated from the epidemiological or immunological models separately. An example is considered in this paper for an environmentally driven infectious disease such as Toxoplasma gondii. The model explicitly couples the within-host and between-host dynamics. The within-host sub-system is linked to a contaminated environment E via an additional term g(E) to account for the increase in the parasite load V within a host due to the continuous ingestion of parasites from the contaminated environment. The parasite load V can also affect the rate of environmental contamination, which directly contributes to the infection rate of hosts for the between-host sub-system. When the two sub-systems are considered in isolation, the dynamics are standard and simple. That is, either the infection-free equilibrium is stable or a unique positive equilibrium is stable depending on the relevant reproduction number being less or greater than 1. However, when the two sub-systems are explicitly coupled, the full system exhibits more complex dynamics including backward bifurcations; that is, multiple positive equilibria exist with one of which being stable even if the reproduction number is less than 1. The biological implications of such bifurcations are illustrated using an example concerning the spread and control of toxoplasmosis.
Collapse
|
30
|
Sun Q, Min L. Dynamics analysis and simulation of a modified HIV infection model with a saturated infection rate. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:145162. [PMID: 24829609 PMCID: PMC3981026 DOI: 10.1155/2014/145162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/28/2014] [Indexed: 11/17/2022]
Abstract
This paper studies a modified human immunodeficiency virus (HIV) infection differential equation model with a saturated infection rate. It is proved that if the basic virus reproductive number R 0 of the model is less than one, then the infection-free equilibrium point of the model is globally asymptotically stable; if R 0 of the model is more than one, then the endemic infection equilibrium point of the model is globally asymptotically stable. Based on the clinical data from HIV drug resistance database of Stanford University, using the proposed model simulates the dynamics of the two groups of patients' anti-HIV infection treatment. The numerical simulation results are in agreement with the evolutions of the patients' HIV RNA levels. It can be assumed that if an HIV infected individual's basic virus reproductive number R 0 < 1 then this person will recover automatically; if an antiretroviral therapy makes an HIV infected individual's R 0 < 1, this person will be cured eventually; if an antiretroviral therapy fails to suppress an HIV infected individual's HIV RNA load to be of unpredictable level, the time that the patient's HIV RNA level has achieved the minimum value may be the starting time that drug resistance has appeared.
Collapse
Affiliation(s)
- Qilin Sun
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lequan Min
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
31
|
Hu Z, Pang W, Liao F, Ma W. Analysis of a CD4$^+$ T cell viral infection model
with a class of saturated infection rate. ACTA ACUST UNITED AC 2014. [DOI: 10.3934/dcdsb.2014.19.735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Jiang C, Wang W. Complete classification of global dynamics of a virus model with
immune responses. ACTA ACUST UNITED AC 2014. [DOI: 10.3934/dcdsb.2014.19.1087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Miron RE, Smith RJ. Resistance to protease inhibitors in a model of HIV-1 infection with impulsive drug effects. Bull Math Biol 2013; 76:59-97. [PMID: 24194434 DOI: 10.1007/s11538-013-9903-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/02/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND The emergence of drug resistance is one of the most prevalent reasons for treatment failure in HIV therapy. This has severe implications for the cost of treatment, survival and quality of life. METHODS We use mathematical modelling to describe the interaction between T cells, HIV-1 and protease inhibitors. We use impulsive differential equations to examine the effects of different levels of protease inhibitors in a T cell. We classify three different regimes according to whether the drug efficacy is low, intermediate or high. The model includes two strains: the wild-type strain, which initially dominates in the absence of drugs, and the mutant strain, which is the less efficient competitor, but has more resistance to the drugs. RESULTS Drug regimes may take trajectories through one, two or all three regimes, depending on the dosage and the dosing schedule. Stability analysis shows that resistance does not emerge at low drug levels. At intermediate drug levels, drug resistance is guaranteed to emerge. At high drug levels, either the drug-resistant strain will dominate or, in the absence of longer-lived reservoirs of infected cells, a region exists where viral elimination could theoretically occur. We provide estimates of a range of dosages and dosing schedules where the trajectories lie either solely within a region or cross multiple regions. CONCLUSION Under specific circumstances, if the drug level is physiologically tolerable, elimination of free virus is theoretically possible. This forms the basis for theoretical control using combination therapy and for understanding the effects of partial adherence.
Collapse
Affiliation(s)
- Rachelle E Miron
- Department of Mathematics, The University of Ottawa, 585 King Edward Ave, Ottawa, ON, K1N 6N5, Canada
| | | |
Collapse
|
34
|
Prague M, Commenges D, Thiébaut R. Dynamical models of biomarkers and clinical progression for personalized medicine: the HIV context. Adv Drug Deliv Rev 2013; 65:954-65. [PMID: 23603207 DOI: 10.1016/j.addr.2013.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/15/2013] [Accepted: 04/10/2013] [Indexed: 01/11/2023]
Abstract
Mechanistic models, based on ordinary differential equation systems, can exhibit very good predictive abilities that will be useful to build treatment monitoring strategies. In this review, we present the potential and the limitations of such models for guiding treatment (monitoring and optimizing) in HIV-infected patients. In the context of antiretroviral therapy, several biological processes should be considered in addition to the interaction between viruses and the host immune system: the mechanisms of action of the drugs, their pharmacokinetics and pharmacodynamics, as well as the viral and host characteristics. Another important aspect to take into account is clinical progression, although its implementation in such modelling approaches is not easy. Finally, the control theory and the use of intrinsic properties of mechanistic models make them very relevant for dynamic treatment adaptation. Their implementation would nevertheless require their evaluation through clinical trials.
Collapse
|
35
|
HIV populations are large and accumulate high genetic diversity in a nonlinear fashion. J Virol 2013; 87:10313-23. [PMID: 23678164 DOI: 10.1128/jvi.01225-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV infection is characterized by rapid and error-prone viral replication resulting in genetically diverse virus populations. The rate of accumulation of diversity and the mechanisms involved are under intense study to provide useful information to understand immune evasion and the development of drug resistance. To characterize the development of viral diversity after infection, we carried out an in-depth analysis of single genome sequences of HIV pro-pol to assess diversity and divergence and to estimate replicating population sizes in a group of treatment-naive HIV-infected individuals sampled at single (n = 22) or multiple, longitudinal (n = 11) time points. Analysis of single genome sequences revealed nonlinear accumulation of sequence diversity during the course of infection. Diversity accumulated in recently infected individuals at rates 30-fold higher than in patients with chronic infection. Accumulation of synonymous changes accounted for most of the diversity during chronic infection. Accumulation of diversity resulted in population shifts, but the rates of change were low relative to estimated replication cycle times, consistent with relatively large population sizes. Analysis of changes in allele frequencies revealed effective population sizes that are substantially higher than previous estimates of approximately 1,000 infectious particles/infected individual. Taken together, these observations indicate that HIV populations are large, diverse, and slow to change in chronic infection and that the emergence of new mutations, including drug resistance mutations, is governed by both selection forces and drift.
Collapse
|
36
|
Chirove F, Lungu EM. Effects of replicative fitness on competing HIV strains. Biosystems 2013; 113:28-36. [PMID: 23623939 DOI: 10.1016/j.biosystems.2013.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/29/2013] [Accepted: 04/04/2013] [Indexed: 11/25/2022]
Abstract
We develop an n-strain model to show the effects of replicative fitness of competing viral strains exerting selective density-dependant infective pressure on each other. A two strain model is used to illustrate the results. A perturbation technique and numerical simulations were used to establish the existence and stability of steady states. More than one infected steady states governed by the replicative fitness resulted from the model exhibiting either strain replacement or co-infection. We found that the presence of two or more HIV strains could result in a disease-free state that, in general, is not globally stable.
Collapse
Affiliation(s)
- Faraimunashe Chirove
- University of KwaZulu-Natal, School of Mathematics, Statistics and Computer Science, Pietermaritzburg, South Africa.
| | | |
Collapse
|
37
|
Nampala H, Luboobi LS, Mugisha JYT, Obua C. Mathematical modeling of liver enzyme elevation in HIV mono-infection. Math Biosci 2013; 242:77-85. [PMID: 23291466 DOI: 10.1016/j.mbs.2012.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 12/20/2022]
Abstract
HIV-infected individuals are increasingly becoming susceptible to liver disease and, hence, liver-related mortality is on a rise. The presence of CD4+ in the liver and the presence of C-X-C chemokine receptor type 4 (CXCR4) on human hepatocytes provide a conducive environment for HIV invasion. In this study, a mathematical model is used to analyse the dynamics of HIV in the liver with the aim of investigating the existence of liver enzyme elevation in HIV mono-infected individuals. In the presence of HIV-specific cytotoxic T-lymphocytes, the model depicts a unique endemic equilibrium with a transcritical bifurcation when the basic reproductive number is unity. Results of the study show that the level of liver enzyme alanine aminotransferase (ALT) increases with increase in the rate of hepatocytes production. Numerical simulations reveal significant elevation of alanine aminotransferase with increase in viral load. The findings presuppose that while liver damage in HIV infection has mostly been associated with HIV/HBV coinfection and use of antiretroviral therapy (ART), it is possible to have liver damage solely with HIV infection.
Collapse
Affiliation(s)
- Hasifa Nampala
- Department of Mathematics, Makerere University, Kampala, Uganda.
| | | | | | | |
Collapse
|
38
|
Wang X, Wang W. An HIV infection model based on a vectored immunoprophylaxis experiment. J Theor Biol 2012; 313:127-35. [DOI: 10.1016/j.jtbi.2012.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/18/2012] [Accepted: 08/20/2012] [Indexed: 10/28/2022]
|
39
|
Hou W, Sui Y, Wang Z, Wang Y, Wang N, Liu J, Li Y, Goodenow M, Yin L, Wang Z, Wu R. Systems mapping of HIV-1 infection. BMC Genet 2012; 13:91. [PMID: 23092371 PMCID: PMC3502423 DOI: 10.1186/1471-2156-13-91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/27/2012] [Indexed: 01/30/2023] Open
Abstract
Mathematical models of viral dynamics in vivo provide incredible insights into the mechanisms for the nonlinear interaction between virus and host cell populations, the dynamics of viral drug resistance, and the way to eliminate virus infection from individual patients by drug treatment. The integration of these mathematical models with high-throughput genetic and genomic data within a statistical framework will raise a hope for effective treatment of infections with HIV virus through developing potent antiviral drugs based on individual patients’ genetic makeup. In this opinion article, we will show a conceptual model for mapping and dictating a comprehensive picture of genetic control mechanisms for viral dynamics through incorporating a group of differential equations that quantify the emergent properties of a system.
Collapse
Affiliation(s)
- Wei Hou
- Center for Computational Biology, Beijing Forestry University, Beijing 100081, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dunia R, Bonnecaze R. Mathematical modeling of viral infection dynamics in spherical organs. J Math Biol 2012; 67:1425-55. [DOI: 10.1007/s00285-012-0593-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 09/06/2012] [Indexed: 01/22/2023]
|
41
|
SRIVASTAVA PRASHANTK, BANERJEE MALAY, CHANDRA PEEYUSH. DYNAMICAL MODEL OF IN-HOST HIV INFECTION: WITH DRUG THERAPY AND MULTI VIRAL STRAINS. J BIOL SYST 2012. [DOI: 10.1142/s021833901250012x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, a mathematical model for the effect of drug therapy on the in-host dynamics of HIV is considered and analyzed. As the process of reverse transcription is highly error prone, it causes mutation of virus which results in the emergence of drug resistant virus. This is also accounted in the model and corresponding model with both drug resistant and drug sensitive viral strains is studied. We found that, if reproductive ratios for both the strains are less than one, the virus population goes to extinction. If the reproductive ratio of either strain is greater than one and the reproductive ratio of drug resistant virus is smaller than that of drug sensitive virus then both the virus strains persist and infection is not cleared. However if reproductive ratio of drug resistant virus is greater than that of drug sensitive virus then the drug resistant virus out-competes the drug sensitive virus and only drug resistant virus survives. Hence the ratio of two reproduction ratios works as invading capacity threshold value for drug resistant strain. We also noted that by increasing the effective efficacy of the drug, virus may be cleared. Numerical simulations are performed to support and elaborate the analytical findings.
Collapse
Affiliation(s)
- PRASHANT K. SRIVASTAVA
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur-208016, India
- Department of Mathematics, Indian Institute of Technology Patna, Patna-800013, India
| | - MALAY BANERJEE
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - PEEYUSH CHANDRA
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur-208016, India
| |
Collapse
|
42
|
Rossenkhan R, Novitsky V, Sebunya TK, Musonda R, Gashe BA, Essex M. Viral diversity and diversification of major non-structural genes vif, vpr, vpu, tat exon 1 and rev exon 1 during primary HIV-1 subtype C infection. PLoS One 2012; 7:e35491. [PMID: 22590503 PMCID: PMC3348911 DOI: 10.1371/journal.pone.0035491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/16/2012] [Indexed: 01/12/2023] Open
Abstract
To assess the level of intra-patient diversity and evolution of HIV-1C non-structural genes in primary infection, viral quasispecies obtained by single genome amplification (SGA) at multiple sampling timepoints up to 500 days post-seroconversion (p/s) were analyzed. The mean intra-patient diversity was 0.11% (95% CI; 0.02 to 0.20) for vif, 0.23% (95% CI; 0.08 to 0.38) for vpr, 0.35% (95% CI; −0.05 to 0.75) for vpu, 0.18% (95% CI; 0.01 to 0.35) for tat exon 1 and 0.30% (95% CI; 0.02 to 0.58) for rev exon 1 during the time period 0 to 90 days p/s. The intra-patient diversity increased gradually in all non-structural genes over the first year of HIV-1 infection, which was evident from the vif mean intra-patient diversity of 0.46% (95% CI; 0.28 to 0.64), vpr 0.44% (95% CI; 0.24 to 0.64), vpu 0.84% (95% CI; 0.55 to 1.13), tat exon 1 0.35% (95% CI; 0.14 to 0.56 ) and rev exon 1 0.42% (95% CI; 0.18 to 0.66) during the time period of 181 to 500 days p/s. There was a statistically significant increase in viral diversity for vif (p = 0.013) and vpu (p = 0.002). No associations between levels of viral diversity within the non-structural genes and HIV-1 RNA load during primary infection were found. The study details the dynamics of the non-structural viral genes during the early stages of HIV-1C infection.
Collapse
Affiliation(s)
- Raabya Rossenkhan
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
- Botswana–Harvard AIDS Institute, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Vladimir Novitsky
- Botswana–Harvard AIDS Institute, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Theresa K. Sebunya
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Rosemary Musonda
- Botswana–Harvard AIDS Institute, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Berhanu A. Gashe
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - M. Essex
- Botswana–Harvard AIDS Institute, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
43
|
Buonomo B, Vargas-De-León C. Global stability for an HIV-1 infection model including an eclipse stage of infected cells. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 2012; 385:709-720. [PMID: 32287385 PMCID: PMC7127580 DOI: 10.1016/j.jmaa.2011.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Indexed: 06/07/2023]
Abstract
We consider the mathematical model for the viral dynamics of HIV-1 introduced in Rong et al. (2007) [37]. One main feature of this model is that an eclipse stage for the infected cells is included and cells in this stage may revert to the uninfected class. The viral dynamics is described by four nonlinear ordinary differential equations. In Rong et al. (2007) [37], the stability of the infected equilibrium has been analyzed locally. Here, we perform the global stability analysis using two techniques, the Lyapunov direct method and the geometric approach to stability, based on the higher-order generalization of Bendixson's criterion. We obtain sufficient conditions written in terms of the system parameters. Numerical simulations are also provided to give a more complete representation of the system dynamics.
Collapse
Affiliation(s)
- Bruno Buonomo
- Department of Mathematics and Applications, University of Naples Federico II, via Cintia, I-80126 Naples, Italy
| | - Cruz Vargas-De-León
- Unidad Académica de Matemáticas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas C.U., Chilpancingo, Guerrero, Mexico
- Facultad de Estudios Superiores Zaragoza, UNAM, Col. Ejército de Oriente, Iztapalapa, Mexico
| |
Collapse
|
44
|
Arafa AAM, Rida SZ, Khalil M. Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection. NONLINEAR BIOMEDICAL PHYSICS 2012; 6:1. [PMID: 22214194 PMCID: PMC3275462 DOI: 10.1186/1753-4631-6-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/03/2012] [Indexed: 05/13/2023]
Abstract
In this paper, we introduce fractional-order into a model of HIV-1 infection of CD4+ T cells. We study the effect of the changing the average number of viral particles N with different sets of initial conditions on the dynamics of the presented model. Generalized Euler method (GEM) will be used to find a numerical solution of the HIV-1 infection fractional order model.
Collapse
Affiliation(s)
- AAM Arafa
- Department of mathematics, Faculty of Science, South Valley University, Qena, Egypt
| | - SZ Rida
- Department of mathematics, Faculty of Science, South Valley University, Qena, Egypt
| | - M Khalil
- Department of mathematics, Faculty of Engineering, Modern Science and Arts University (MSA), Giza, Egypt
| |
Collapse
|
45
|
Cortes LMP, Zurakowski R. Resistance evolution in HIV - modeling when to intervene. PROCEEDINGS OF THE ... AMERICAN CONTROL CONFERENCE. AMERICAN CONTROL CONFERENCE 2012; 2012:4053-4058. [PMID: 25264400 PMCID: PMC4175725 DOI: 10.1109/acc.2012.6315693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The treatment of HIV is complicated by the evolution of antiviral drug resistant virus and the limited availability of antigenically independent antiviral regimens. The consequences to the patient of successive virological failures is such that many strategies to minimize the occurrence of such failures are being investigated. In this paper, a Markov chain-based model of virological failure is introduced. This model considers sequential failure events, and differentiates between several modes of virological failure. This model is then used to evaluate the resistance- targeted interventions by means of testing the impact of a viral load preconditioning strategy on total treatment regimen longevity in HIV patients. It is shown that a proposed intervention targeting pre-existing resistance has the potential to increase the expected time to three sequential virological failures by an average of 3.3 years per patient. When combined with an intervention targeting patient compliance, the total potential increase in the time to three sequential virological failures is as high as 11.2 years. The impact on patient and public health is discussed.
Collapse
Affiliation(s)
| | - Ryan Zurakowski
- Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
46
|
Abstract
A mathematical model for the effect of Reverse Transcriptase (RT) Inhibitor on the dynamics of HIV is proposed and analyzed. Further, with help of numerical simulations, the relation between efficacy of administered drug, the total number of virus particles emitted from the infected cell and the transition period is also discussed.
Collapse
Affiliation(s)
- P. K. SRIVASTAVA
- Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, Kanpur – 208016, India
| | - M. BANERJEE
- Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, Kanpur – 208016, India
| | - PEEYUSH CHANDRA
- Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, Kanpur – 208016, India
| |
Collapse
|
47
|
TARFULEA NICOLETA, BLINK ALLISON, NELSON ERIC, TURPIN DAVID. A CTL-INCLUSIVE MATHEMATICAL MODEL FOR ANTIRETROVIRAL TREATMENT OF HIV INFECTION. INT J BIOMATH 2011. [DOI: 10.1142/s1793524511001209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Treatment of HIV infection has traditionally consisted of antiretroviral therapy (ART), a regimen of pharmaceutical treatments that often produces unwanted physical side effects and can become costly over long periods of time. Motivated by a way to control the spread of HIV in the body without the need for large quantities of medicine, researchers have explored treatment methods which rely on stimulating an individual's immune response, such as the cytotoxic lymphocyte (CTL) response, in addition to the usage of antiretroviral drugs. This paper investigates theoretically and numerically the effect of immune effectors in modeling HIV pathogenesis, our results suggest the significant impact of the immune response on the control of the virus during primary infection. Qualitative aspects (including positivity, stability, uncertainty, and sensitivity analysis) are addressed. Additionally, by introducing drug therapy, we analyze numerically the model to assess the effect of treatment. Our results show that the inclusion of the CTL compartment produces a higher rebound for an individual's healthy helper T-cell compartment than does drug therapy alone. Furthermore, we quantitatively characterize successful drugs or drug combination scenarios.
Collapse
Affiliation(s)
- NICOLETA TARFULEA
- Department of Mathematics, Purdue University Calumet, 2200 169th Street, Hammond, IN 46323, USA
| | - ALLISON BLINK
- Department of Mathematics, Purdue University Calumet, 2200 169th Street, Hammond, IN 46323, USA
| | - ERIC NELSON
- Department of Mathematics, Purdue University Calumet, 2200 169th Street, Hammond, IN 46323, USA
| | - DAVID TURPIN
- Department of Mathematics, Purdue University Calumet, 2200 169th Street, Hammond, IN 46323, USA
| |
Collapse
|
48
|
Residual activity of two HIV antiretroviral regimens prescribed without virological monitoring. Antimicrob Agents Chemother 2011; 55:4575-80. [PMID: 21768516 DOI: 10.1128/aac.00580-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virological residual activity (VRA) denotes the degree of HIV RNA suppression achieved by antiretroviral therapy in the presence of resistant virus. This concept is particularly important in resource-limited settings, where rapid switching after detection of virological failure may not be feasible. Using data from the NORA trial, we estimated VRA for two regimens-zidovudine-lamivudine-abacavir (ZDV-3TC-ABC) and zidovudine-lamivudine-nevirapine (ZDV-3TC-NVP)-and related this to the phenotypic drug sensitivity of the component drugs in the two regimens. Plasma samples at weeks 0, 48, and 96 were retrospectively assayed for HIV-1 RNA, and genotypic/phenotypic resistance testing was performed if HIV-1 RNA exceeded 1,000 copies/ml. Virological residual activity (VRA) was defined as the difference between log(10)(HIV RNA) at week 48 or 96 and week 0 and related to 50% inhibitory concentration (IC(50)) relative to wild-type virus for ZDV and ABC (fold change [FC]). Twenty-seven samples in the ZDV-3TC-NVP group and 56 in the ZDV-3TC-ABC group contributed to the analysis. Mean VRA was significantly higher in the ZDV-3TC-ABC group than in the ZDV-3TC-NVP at week 48 (1.62 versus 0.90) and week 96 (1.29 versus 0.78). There was a weak and nonsignificant relationship between VRA and ZDV FC, with VRA decreasing by 0.1 log(10) copies/ml per 2-fold increase in ZDV. The association with ABC FC was much stronger, with a marked reduction in VRA occurring at ABC FC values greater than approximately 2. This information should be considered in future treatment guidelines relevant to resource-poor settings.
Collapse
|
49
|
Guo Y, Luo J, Wang J, Wang Y, Wu R. How to compute which genes control drug resistance dynamics. Drug Discov Today 2011; 16:339-44. [PMID: 21315181 DOI: 10.1016/j.drudis.2011.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/20/2011] [Accepted: 02/01/2011] [Indexed: 01/13/2023]
Abstract
Increasing evidence shows that genes have a pivotal role in affecting the dynamic pattern of viral loads in the body of a host. By reviewing the biochemical interactions between a virus and host cells as a dynamic system, we outline a computational approach for mapping the genetic control of virus dynamics. The approach integrates differential equations (DEs) to quantify the dynamic origin and behavior of a viral infection system. It enables geneticists to generate various testable hypotheses about the genetic control mechanisms for virus dynamics and infection. The experiment designed according to this approach will also enable researchers to gain insight into the role of genes in limiting virus abundance and the dynamics of viral drug resistance, facilitating the development of personalized medicines to eliminate viral infections.
Collapse
Affiliation(s)
- Yunqian Guo
- Center for Computational Biology, Beijing Forestry University, Beijing 100083, China
| | | | | | | | | |
Collapse
|
50
|
Reynolds KS. Clinical pharmacology and viral infections. Clin Pharmacol Ther 2010; 88:569-73. [PMID: 20959836 DOI: 10.1038/clpt.2010.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|