1
|
Gaougaou G, Vincent AT, Krylova K, Habouria H, Bessaiah H, Baraketi A, Veyrier FJ, Dozois CM, Déziel E, Lacroix M. Adaptive Radioresistance of Enterohemorrhagic Escherichia coli O157:H7 Results in Genomic Loss of Shiga Toxin-Encoding Prophages. Appl Environ Microbiol 2023; 89:e0130622. [PMID: 37014232 PMCID: PMC10132102 DOI: 10.1128/aem.01306-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a foodborne pathogen producing Shiga toxins (Stx1 and Stx2), which can cause hemorrhagic diarrhea and life-threatening infections. O157:H7 strain EDL933 carries prophages CP-933V and BP-933W, which encode Shiga toxin genes (stx1 and stx2, respectively). The aim of this work was to investigate the mechanisms of adaptive resistance of EHEC strain EDL933 to a typically lethal dose of gamma irradiation (1.5 kGy). Adaptive selection through six passages of exposure to 1.5 kGy resulted in the loss of CP-933V and BP-933W prophages from the genome and mutations within three genes: wrbA, rpoA, and Wt_02639 (molY). Three selected EHEC clones that became irradiation adapted to the 1.5-kGy dose (C1, C2, and C3) demonstrated increased resistance to oxidative stress, sensitivity to acid pH, and decreased cytotoxicity to Vero cells. To confirm that loss of prophages plays a role in increased radioresistance, clones C1 and C2 were exposed to bacteriophage-containing lysates. Although phage BP-933W could lysogenize C1, C2, and E. coli K-12 strain MG1655, it was not found to have integrated into the bacterial chromosome in C1-Φ and C2-Φ lysogens. Interestingly, for the E. coli K-12 lysogen (K-12-Φ), BP-933W DNA had integrated at the wrbA gene (K-12-Φ). Both C1-Φ and C2-Φ lysogens regained sensitivity to oxidative stress, were more effectively killed by a 1.5-kGy gamma irradiation dose, and had regained cytotoxicity and acid resistance phenotypes. Further, the K-12-Φ lysogen became cytotoxic, more sensitive to gamma irradiation and oxidative stress, and slightly more acid resistant. IMPORTANCE Gamma irradiation of food products can provide an effective means of eliminating bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC) O157:H7, a significant foodborne pathogen that can cause severe disease due to the production of Stx. To decipher the mechanisms of adaptive resistance of the O157:H7 strain EDL933, we evolved clones of this bacterium resistant to a lethal dose of gamma irradiation by repeatedly exposing bacterial cells to irradiation following a growth restoration over six successive passages. Our findings provide evidence that adaptive selection involved modifications in the bacterial genome, including deletion of the CP-933V and BP-933W prophages. These mutations in EHEC O157:H7 resulted in loss of stx1 and stx2, loss of cytotoxicity to epithelial cells, and decreased resistance to acidity, critical virulence determinants of EHEC, concomitant with increased resistance to lethal irradiation and oxidative stress. These findings demonstrate that the potential adaptation of EHEC to high doses of radiation would involve elimination of the Stx-encoding phages and likely lead to a substantial attenuation of virulence.
Collapse
Affiliation(s)
- Ghizlane Gaougaou
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Antony T. Vincent
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Kateryna Krylova
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Hajer Habouria
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Hicham Bessaiah
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Amina Baraketi
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | | | - Charles M. Dozois
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Eric Déziel
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Monique Lacroix
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| |
Collapse
|
2
|
In Search of Proximate Triggers of Anthrax Outbreaks in Wildlife: A Hypothetical Individual-Based Model of Plasmid Transfer within Bacillus Communities. DIVERSITY 2023. [DOI: 10.3390/d15030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Bacillus anthracis, the causative agent of anthrax in humans, livestock, and wildlife, exists in a community with hundreds of other species of bacteria in the environment. Work on the genetics of these communities has shown that B. anthracis shares a high percentage of chromosomal genes with both B. thuringiensis and B. cereus, and that phenotypic differences among these bacteria can result from extra-chromosomal DNA in the form of plasmids. We developed a simple hypothetical individual-based model to simulate the likelihood of detecting plasmids with genes encoding anthrax toxins within bacterial communities composed of B. anthracis, B. thuringiensis, and B. cereus, and the surrounding matrix of extra-cellular polymeric substances. Simulation results suggest the horizontal transfer of plasmids with genes encoding anthrax toxins among Bacillus species persisting outside the host could function as a proximate factor triggering anthrax outbreaks.
Collapse
|
3
|
Pinto G, Sampaio M, Dias O, Almeida C, Azeredo J, Oliveira H. Insights into the genome architecture and evolution of Shiga toxin encoding bacteriophages of Escherichia coli. BMC Genomics 2021; 22:366. [PMID: 34011288 PMCID: PMC8136144 DOI: 10.1186/s12864-021-07685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Background A total of 179 Shiga toxin-producing Escherichia coli (STEC) complete genomes were analyzed in terms of serotypes, prophage coding regions, and stx gene variants and their distribution. We further examined the genetic diversity of Stx-converting phage genomes (Stx phages), focusing on the lysis-lysogeny decision and lytic cassettes. Results We show that most STEC isolates belong to non-O157 serotypes (73 %), regardless the sources and geographical regions. While the majority of STEC genomes contain a single stx gene (61 %), strains containing two (35 %), three (3 %) and four (1 %) stx genes were also found, being stx2 the most prevalent gene variant. Their location is exclusively found in intact prophage regions, indicating that they are phage-borne. We further demonstrate that Stx phages can be grouped into four clusters (A, B, C and D), three subclusters (A1, A2 and A3) and one singleton, based on their shared gene content. This cluster distribution is in good agreement with their predicted virion morphologies. Stx phage genomes are highly diverse with a vast number of 1,838 gene phamilies (phams) of related sequences (of which 677 are orphams i.e. unique genes) and, although having high mosaicism, they are generally organized into three major transcripts. While the mechanisms that guide lysis–lysogeny decision are complex, there is a strong selective pressure to maintain the stx genes location close to the lytic cassette composed of predicted SAR-endolysin and pin-holin lytic proteins. The evolution of STEC Stx phages seems to be strongly related to acquiring genetic material, probably from horizontal gene transfer events. Conclusions This work provides novel insights on the genetic structure of Stx phages, showing a high genetic diversity throughout the genomes, where the various lysis-lysogeny regulatory systems are in contrast with an uncommon, but conserved, lytic system always adjacent to stx genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07685-0.
Collapse
Affiliation(s)
- Graça Pinto
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Marta Sampaio
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
4
|
Imamovic L, Ballesté E, Martínez-Castillo A, García-Aljaro C, Muniesa M. Heterogeneity in phage induction enables the survival of the lysogenic population. Environ Microbiol 2016; 18:957-69. [PMID: 26626855 DOI: 10.1111/1462-2920.13151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 11/24/2015] [Indexed: 11/29/2022]
Abstract
Lysogeny by temperate phages provides novel functions for bacteria and shelter for phages. However, under conditions that activate the phage lytic cycle, the benefit of lysogeny becomes a paradox that poses a threat for bacterial population survival. Using Escherichia coli lysogens for Shiga toxin (Stx) phages as model, we demonstrate how lysogenic bacterial populations circumvent extinction after phage induction. A fraction of cells maintains lysogeny, allowing population survival, whereas the other fraction of cells lyse, increasing Stx production and spreading Stx phages. The uninduced cells were still lysogenic for the Stx phage and equally able to induce phages as the original cells, suggesting heterogeneity of the E. coli lysogenic population. The bacterial population can modulate phage induction under stress conditions by the stress regulator RpoS. Cells overexpressing RpoS reduce Stx phage induction and compete with and survive better than cells with baseline RpoS levels. Our observations suggest that population heterogeneity in phage induction could be widespread among other bacterial genera and we propose this is a mechanism positively selected to prevent the extinction of the lysogenic population that can be modulated by environmental conditions.
Collapse
Affiliation(s)
- Lejla Imamovic
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Elisenda Ballesté
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Alexandre Martínez-Castillo
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Cristina García-Aljaro
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| | - Maite Muniesa
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028, Barcelona, Spain
| |
Collapse
|
5
|
Łoś JM, Łoś M, Węgrzyn G. Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. Future Microbiol 2011; 6:909-24. [DOI: 10.2217/fmb.11.70] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although most Escherichia coli strains occur in the mammalian intestine as commensals, some of them, including enterohemorrhagic E. coli (EHEC), are capable of causing disease in humans. The most notorious virulence factors of EHEC are Shiga toxins, encoded by genes located on genomes of lambdoid prophages. Production and release of these toxins is strongly stimulated after the induction of these prophages. Many antibiotics used to treat bacterial infections stimulate induction of Shiga toxin-converting prophages, enhancing severity of the disease symptoms. Hence, treatment with antibiotics is not recommended if infection with EHEC is confirmed or even suspected. In this light, rapid detection of EHEC is crucial, and understanding the mechanisms of prophage induction and phage development in the human intestine is important to facilitate development of procedures preventing or alleviating Shiga toxin-caused diseases.
Collapse
Affiliation(s)
- Joanna M Łoś
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80–822 Gdansk, Poland
| | - Marcin Łoś
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80–822 Gdansk, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01–224 Warsaw, Poland
| | | |
Collapse
|
6
|
Fogg PCM, Rigden DJ, Saunders JR, McCarthy AJ, Allison HE. Characterization of the relationship between integrase, excisionase and antirepressor activities associated with a superinfecting Shiga toxin encoding bacteriophage. Nucleic Acids Res 2011; 39:2116-29. [PMID: 21062824 PMCID: PMC3064807 DOI: 10.1093/nar/gkq923] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 11/13/2022] Open
Abstract
Shigatoxigenic Escherichia coli emerged as new food borne pathogens in the early 1980s, primarily driven by the dispersal of Shiga toxin-encoding lambdoid bacteriophages. At least some of these Stx phages display superinfection phenotypes, which differ significantly from lambda phage itself, driving through in situ recombination further phage evolution, increasing host range and potentially increasing the host's pathogenic profile. Here, increasing levels of Stx phage Φ24(B) integrase expression in multiple lysogen cultures are demonstrated along with apparently negligible repression of integrase expression by the cognate CI repressor. The Φ24(B) int transcription start site and promoter region were identified and found to differ from in silico predictions. The unidirectional activity of this integrase was determined in an in situ, inducible tri-partite reaction. This indicated that Φ24(B) must encode a novel directionality factor that is controlling excision events during prophage induction. This excisionase was subsequently identified and characterized through complementation experiments. In addition, the previous proposal that a putative antirepressor was responsible for the lack of immunity to superinfection through inactivation of CI has been revisited and a new hypothesis involving the role of this protein in promoting efficient induction of the Φ24(B) prophage is proposed.
Collapse
Affiliation(s)
- P. C. M. Fogg
- Microbiology Research Group, School of Biological Sciences, University of Liverpool and Structural Biology Group, School of Biological Sciences, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - D. J. Rigden
- Microbiology Research Group, School of Biological Sciences, University of Liverpool and Structural Biology Group, School of Biological Sciences, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - J. R. Saunders
- Microbiology Research Group, School of Biological Sciences, University of Liverpool and Structural Biology Group, School of Biological Sciences, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - A. J. McCarthy
- Microbiology Research Group, School of Biological Sciences, University of Liverpool and Structural Biology Group, School of Biological Sciences, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - H. E. Allison
- Microbiology Research Group, School of Biological Sciences, University of Liverpool and Structural Biology Group, School of Biological Sciences, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
7
|
Gregory R, Saunders V, Saunders J. Rule-based simulation of temperate bacteriophage infection: Restriction–modification as a limiter to infection in bacterial populations. Biosystems 2010; 100:166-77. [DOI: 10.1016/j.biosystems.2010.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/23/2010] [Accepted: 02/27/2010] [Indexed: 10/19/2022]
|