1
|
Soll DR. White-opaque switching in Candida albicans: cell biology, regulation, and function. Microbiol Mol Biol Rev 2024; 88:e0004322. [PMID: 38546228 PMCID: PMC11332339 DOI: 10.1128/mmbr.00043-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
SUMMARYCandida albicans remains a major fungal pathogen colonizing humans and opportunistically invading tissue when conditions are predisposing. Part of the success of C. albicans was attributed to its capacity to form hyphae that facilitate tissue invasion. However, in 1987, a second developmental program was discovered, the "white-opaque transition," a high-frequency reversible switching system that impacted most aspects of the physiology, cell architecture, virulence, and gene expression of C. albicans. For the 15 years following the discovery of white-opaque switching, its role in the biology of C. albicans remained elusive. Then in 2002, it was discovered that in order to mate, C. albicans had to switch from white to opaque, a unique step in a yeast mating program. In 2006, three laboratories simultaneously identified a putative master switch gene, which led to a major quest to elucidate the underlying mechanisms that regulate white-opaque switching. Here, the evolving discoveries related to this complicated phenotypic transition are reviewed in a quasi-chronological order not only to provide a historical perspective but also to highlight several unique characteristics of white-opaque switching, which are fascinating and may be important to the life history and virulence of this persistent pathogen. Many of these characteristics have not been fully investigated, in many cases, leaving intriguing questions unresolved. Some of these include the function of unique channeled pimples on the opaque cell wall, the capacity to form opaque cells in the absence of the master switch gene WOR1, the formation of separate "pathogenic" and "sexual" biofilms, and the possibility that a significant portion of natural strains colonizing the lower gastrointestinal tract may be in the opaque phase. This review addresses many of these characteristics with the intent of engendering interest in resolving questions that remain unanswered.
Collapse
Affiliation(s)
- David R. Soll
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Hari K, Harlapur P, Gopalan A, Ullanat V, Duddu AS, Jolly MK. Emergent properties of coupled bistable switches. J Biosci 2022. [DOI: 10.1007/s12038-022-00310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Ziv N, Brenes LR, Johnson A. Multiple molecular events underlie stochastic switching between 2 heritable cell states in fungi. PLoS Biol 2022; 20:e3001657. [PMID: 35594297 PMCID: PMC9162332 DOI: 10.1371/journal.pbio.3001657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic transcriptional networks are often large and contain several levels of feedback regulation. Many of these networks have the ability to generate and maintain several distinct transcriptional states across multiple cell divisions and to switch between them. In certain instances, switching between cell states is stochastic, occurring in a small subset of cells of an isogenic population in a seemingly homogenous environment. Given the scarcity and unpredictability of switching in these cases, investigating the determining molecular events is challenging. White-opaque switching in the fungal species Candida albicans is an example of stably inherited cell states that are determined by a complex transcriptional network and can serve as an experimentally accessible model system to study characteristics important for stochastic cell fate switching in eukaryotes. In standard lab media, genetically identical cells maintain their cellular identity (either "white" or "opaque") through thousands of cell divisions, and switching between the states is rare and stochastic. By isolating populations of white or opaque cells, previous studies have elucidated the many differences between the 2 stable cell states and identified a set of transcriptional regulators needed for cell type switching and maintenance of the 2 cell types. Yet, little is known about the molecular events that determine the rare, stochastic switching events that occur in single cells. We use microfluidics combined with fluorescent reporters to directly observe rare switching events between the white and opaque states. We investigate the stochastic nature of switching by beginning with white cells and monitoring the activation of Wor1, a master regulator and marker for the opaque state, in single cells and throughout cell pedigrees. Our results indicate that switching requires 2 stochastic steps; first an event occurs that predisposes a lineage of cells to switch. In the second step, some, but not all, of those predisposed cells rapidly express high levels of Wor1 and commit to the opaque state. To further understand the rapid rise in Wor1, we used a synthetic inducible system in Saccharomyces cerevisiae into which a controllable C. albicans Wor1 and a reporter for its transcriptional control region have been introduced. We document that Wor1 positive autoregulation is highly cooperative (Hill coefficient > 3), leading to rapid activation and producing an "all or none" rather than a graded response. Taken together, our results suggest that reaching a threshold level of a master regulator is sufficient to drive cell type switching in single cells and that an earlier molecular event increases the probability of reaching that threshold in certain small lineages of cells. Quantitative molecular analysis of the white-opaque circuit can serve as a model for the general understanding of complex circuits.
Collapse
Affiliation(s)
- Naomi Ziv
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (NZ); (AJ)
| | - Lucas R. Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (NZ); (AJ)
| |
Collapse
|
4
|
Glazier VE. EFG1, Everyone’s Favorite Gene in Candida albicans: A Comprehensive Literature Review. Front Cell Infect Microbiol 2022; 12:855229. [PMID: 35392604 PMCID: PMC8980467 DOI: 10.3389/fcimb.2022.855229] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Candida sp. are among the most common fungal commensals found in the human microbiome. Although Candida can be found residing harmlessly on the surface of the skin and mucosal membranes, these opportunistic fungi have the potential to cause superficial skin, nail, and mucus membrane infections as well as life threatening systemic infections. Severity of infection is dependent on both fungal and host factors including the immune status of the host. Virulence factors associated with Candida sp. pathogenicity include adhesin proteins, degradative enzymes, phenotypic switching, and morphogenesis. A central transcriptional regulator of morphogenesis, the transcription factor Efg1 was first characterized in Candida albicans in 1997. Since then, EFG1 has been referenced in the Candida literature over three thousand times, with the number of citations growing daily. Arguably one of the most well studied genes in Candida albicans, EFG1 has been referenced in nearly all contexts of Candida biology from the development of novel therapeutics to white opaque switching, hyphae morphology to immunology. In the review that follows we will synthesize the research that has been performed on this extensively studied transcription factor and highlight several important unanswered questions.
Collapse
|
5
|
Rodriguez L, Voorhies M, Gilmore S, Beyhan S, Myint A, Sil A. Opposing signaling pathways regulate morphology in response to temperature in the fungal pathogen Histoplasma capsulatum. PLoS Biol 2019; 17:e3000168. [PMID: 31568523 PMCID: PMC6786654 DOI: 10.1371/journal.pbio.3000168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/10/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Phenotypic switching between 2 opposing cellular states is a fundamental aspect of biology, and fungi provide facile systems to analyze the interactions between regulons that control this type of switch. A long-standing mystery in fungal pathogens of humans is how thermally dimorphic fungi switch their developmental form in response to temperature. These fungi, including the subject of this study, Histoplasma capsulatum, are temperature-responsive organisms that utilize unknown regulatory pathways to couple their cell shape and associated attributes to the temperature of their environment. H. capsulatum grows as a multicellular hypha in the soil that switches to a pathogenic yeast form in response to the temperature of a mammalian host. These states can be triggered in the laboratory simply by growing the fungus either at room temperature (RT; which promotes hyphal growth) or at 37 °C (which promotes yeast-phase growth). Prior worked revealed that 15% to 20% of transcripts are differentially expressed in response to temperature, but it is unclear which transcripts are linked to specific phenotypic changes, such as cell morphology or virulence. To elucidate temperature-responsive regulons, we previously identified 4 transcription factors (required for yeast-phase growth [Ryp]1-4) that are required for yeast-phase growth at 37 °C; in each ryp mutant, the fungus grows constitutively as hyphae regardless of temperature, and the cells fail to express genes that are normally induced in response to growth at 37 °C. Here, we perform the first genetic screen to identify genes required for hyphal growth of H. capsulatum at RT and find that disruption of the signaling mucin MSB2 results in a yeast-locked phenotype. RNA sequencing (RNAseq) experiments reveal that MSB2 is not required for the majority of gene expression changes that occur when cells are shifted to RT. However, a small subset of temperature-responsive genes is dependent on MSB2 for its expression, thereby implicating these genes in the process of filamentation. Disruption or knockdown of an Msb2-dependent mitogen-activated protein (MAP) kinase (HOG2) and an APSES transcription factor (STU1) prevents hyphal growth at RT, validating that the Msb2 regulon contains genes that control filamentation. Notably, the Msb2 regulon shows conserved hyphal-specific expression in other dimorphic fungi, suggesting that this work defines a small set of genes that are likely to be conserved regulators and effectors of filamentation in multiple fungi. In contrast, a few yeast-specific transcripts, including virulence factors that are normally expressed only at 37 °C, are inappropriately expressed at RT in the msb2 mutant, suggesting that expression of these genes is coupled to growth in the yeast form rather than to temperature. Finally, we find that the yeast-promoting transcription factor Ryp3 associates with the MSB2 promoter and inhibits MSB2 transcript expression at 37 °C, whereas Msb2 inhibits accumulation of Ryp transcripts and proteins at RT. These findings indicate that the Ryp and Msb2 circuits antagonize each other in a temperature-dependent manner, thereby allowing temperature to govern cell shape and gene expression in this ubiquitous fungal pathogen of humans.
Collapse
Affiliation(s)
- Lauren Rodriguez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Mark Voorhies
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Sarah Gilmore
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Sinem Beyhan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Anthony Myint
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Anita Sil
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Fungi are prone to phenotypic instability, that is, the vegetative phase of these organisms, be they yeasts or molds, undergoes frequent switching between two or more behaviors, often with different morphologies, but also sometime having different physiologies without any obvious morphological outcome. In the context of industrial utilization of fungi, this can have a negative impact on the maintenance of strains and/or on their productivity. Instabilities have been shown to result from various mechanisms, either genetic or epigenetic. This chapter will review different types of instabilities and discuss some lesser-known ones, mostly in filamentous fungi, while it will direct readers to additional literature in the case of well-known phenomena such as the amyloid prions or fungal senescence. It will present in depth the "white/opaque" switch of Candida albicans and the "crippled growth" degeneration of the model fungus Podospora anserina. These are two of the most thoroughly studied epigenetic phenotypic switches. I will also discuss the "sectors" presented by many filamentous ascomycetes, for which a prion-based model exists but is not demonstrated. Finally, I will also describe intriguing examples of phenotypic instability for which an explanation has yet to be provided.
Collapse
|
7
|
Jia D, Jolly MK, Harrison W, Boareto M, Ben-Jacob E, Levine H. Operating principles of tristable circuits regulating cellular differentiation. Phys Biol 2017; 14:035007. [PMID: 28443829 DOI: 10.1088/1478-3975/aa6f90] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many cell-fate decisions during embryonic development are governed by a motif comprised of two transcription factors (TFs) A and B that mutually inhibit each other and may self-activate. This motif, called as a self-activating toggle switch (SATS), can typically have three stable states (phenotypes)-two corresponding to differentiated cell fates, each of which has a much higher level of one TF than the other-[Formula: see text] or [Formula: see text]-and the third state corresponding to an 'undecided' stem-like state with similar levels of both A and B-[Formula: see text]. Furthermore, two or more SATSes can be coupled together in various topologies in different contexts, thereby affecting the coordination between multiple cellular decisions. However, two questions remain largely unanswered: (a) what governs the co-existence and relative stability of these three stable states? (b) What orchestrates the decision-making of coupled SATSes? Here, we first demonstrate that the co-existence and relative stability of the three stable states in an individual SATS can be governed by the relative strength of self-activation, external signals activating and/or inhibiting A and B, and mutual degradation between A and B. Simultaneously, we investigate the effects of these factors on the decision-making of two coupled SATSes. Our results offer novel understanding into the operating principles of individual and coupled tristable self-activating toggle switches (SATSes) regulating cellular differentiation and can yield insights into synthesizing three-way genetic circuits and understanding of cellular reprogramming.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, United States of America. Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005-1827, United States of America
| | | | | | | | | | | |
Collapse
|
8
|
Anderson MZ, Porman AM, Wang N, Mancera E, Huang D, Cuomo CA, Bennett RJ. A Multistate Toggle Switch Defines Fungal Cell Fates and Is Regulated by Synergistic Genetic Cues. PLoS Genet 2016; 12:e1006353. [PMID: 27711197 PMCID: PMC5053522 DOI: 10.1371/journal.pgen.1006353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022] Open
Abstract
Heritable epigenetic changes underlie the ability of cells to differentiate into distinct cell types. Here, we demonstrate that the fungal pathogen Candida tropicalis exhibits multipotency, undergoing stochastic and reversible switching between three cellular states. The three cell states exhibit unique cellular morphologies, growth rates, and global gene expression profiles. Genetic analysis identified six transcription factors that play key roles in regulating cell differentiation. In particular, we show that forced expression of Wor1 or Efg1 transcription factors can be used to manipulate transitions between all three cell states. A model for tristability is proposed in which Wor1 and Efg1 are self-activating but mutually antagonistic transcription factors, thereby forming a symmetrical self-activating toggle switch. We explicitly test this model and show that ectopic expression of WOR1 can induce white-to-hybrid-to-opaque switching, whereas ectopic expression of EFG1 drives switching in the opposite direction, from opaque-to-hybrid-to-white cell states. We also address the stability of induced cell states and demonstrate that stable differentiation events require ectopic gene expression in combination with chromatin-based cues. These studies therefore experimentally test a model of multistate stability and demonstrate that transcriptional circuits act synergistically with chromatin-based changes to drive cell state transitions. We also establish close mechanistic parallels between phenotypic switching in unicellular fungi and cell fate decisions during stem cell reprogramming.
Collapse
Affiliation(s)
- Matthew Z. Anderson
- Department of Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Allison M. Porman
- Department of Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Na Wang
- Department of Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Eugenio Mancera
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Denis Huang
- Department of Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Richard J. Bennett
- Department of Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
9
|
Abstract
Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation-repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on-off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures.
Collapse
Affiliation(s)
- Diego A Oyarzún
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| | - Madalena Chaves
- BioCore team, INRIA Sophia Antipolis 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis, France
| |
Collapse
|
10
|
Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch. Genetics 2016; 203:1679-92. [PMID: 27280690 DOI: 10.1534/genetics.116.190645] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/23/2016] [Indexed: 02/04/2023] Open
Abstract
The human fungal pathogen Candida albicans can reversibly switch between two cell types named "white" and "opaque," each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white-opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white-opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white-opaque switching to cellular physiology.
Collapse
|
11
|
Pantoja-Hernández L, Martínez-García JC. Retroactivity in the Context of Modularly Structured Biomolecular Systems. Front Bioeng Biotechnol 2015; 3:85. [PMID: 26137457 PMCID: PMC4470261 DOI: 10.3389/fbioe.2015.00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/24/2015] [Indexed: 11/13/2022] Open
Abstract
Synthetic biology has intensively promoted the technical implementation of modular strategies in the fabrication of biological devices. Modules are considered as networks of reactions. The behavior displayed by biomolecular systems results from the information processes carried out by the interconnection of the involved modules. However, in natural systems, module wiring is not a free-of-charge process; as a consequence of interconnection, a reactive phenomenon called retroactivity emerges. This phenomenon is characterized by signals that propagate from downstream modules (the modules that receive the incoming signals upon interconnection) to upstream ones (the modules that send the signals upon interconnection). Such retroactivity signals, depending of their strength, may change and sometimes even disrupt the behavior of modular biomolecular systems. Thus, analysis of retroactivity effects in natural biological and biosynthetic systems is crucial to achieve a deeper understanding of how this interconnection between functionally characterized modules takes place and how it impacts the overall behavior of the involved cell. By discussing the modules interconnection in natural and synthetic biomolecular systems, we propose that such systems should be considered as quasi-modular.
Collapse
Affiliation(s)
- Libertad Pantoja-Hernández
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México , Mexico City , Mexico ; Centro de Ciencias de Complejidad (C3), Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Juan Carlos Martínez-García
- Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) , Mexico City , Mexico
| |
Collapse
|
12
|
Wang P, Lü J, Yu X. Colored Noise Induced Bistable Switch in the Genetic Toggle Switch Systems. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:579-589. [PMID: 26357269 DOI: 10.1109/tcbb.2014.2368982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Noise can induce various dynamical behaviors in nonlinear systems. White noise perturbed systems have been extensively investigated during the last decades. In gene networks, experimentally observed extrinsic noise is colored. As an attempt, we investigate the genetic toggle switch systems perturbed by colored extrinsic noise and with kinetic parameters. Compared with white noise perturbed systems, we show there also exists optimal colored noise strength to induce the best stochastic switch behaviors in the single toggle switch, and the best synchronized switching in the networked systems, which demonstrate that noise-induced optimal switch behaviors are widely in existence. Moreover, under a wide range of system parameter regions, we find there exist wider ranges of white and colored noises strengths to induce good switch and synchronization behaviors, respectively; therefore, white noise is beneficial for switch and colored noise is beneficial for population synchronization. Our observations are very robust to extrinsic stimulus strength, cell density, and diffusion rate. Finally, based on the Waddington's epigenetic landscape and the Wiener-Khintchine theorem, physical mechanisms underlying the observations are interpreted. Our investigations can provide guidelines for experimental design, and have potential clinical implications in gene therapy and synthetic biology.
Collapse
|
13
|
Hernday AD, Lohse MB, Fordyce PM, Nobile CJ, DeRisi JL, Johnson AD. Structure of the transcriptional network controlling white-opaque switching in Candida albicans. Mol Microbiol 2013; 90:22-35. [PMID: 23855748 DOI: 10.1111/mmi.12329] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 01/06/2023]
Abstract
The human fungal pathogen Candida albicans can switch between two phenotypic cell types, termed 'white' and 'opaque'. Both cell types are heritable for many generations, and the switch between the two types occurs epigenetically, that is, without a change in the primary DNA sequence of the genome. Previous work identified six key transcriptional regulators important for white-opaque switching: Wor1, Wor2, Wor3, Czf1, Efg1, and Ahr1. In this work, we describe the structure of the transcriptional network that specifies the white and opaque cell types and governs the ability to switch between them. In particular, we use a combination of genome-wide chromatin immunoprecipitation, gene expression profiling, and microfluidics-based DNA binding experiments to determine the direct and indirect regulatory interactions that form the switch network. The six regulators are arranged together in a complex, interlocking network with many seemingly redundant and overlapping connections. We propose that the structure (or topology) of this network is responsible for the epigenetic maintenance of the white and opaque states, the switching between them, and the specialized properties of each state.
Collapse
Affiliation(s)
- Aaron D Hernday
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94158, USA
| | | | | | | | | | | |
Collapse
|
14
|
Differential regulation of white-opaque switching by individual subunits of Candida albicans mediator. EUKARYOTIC CELL 2013; 12:1293-304. [PMID: 23873866 DOI: 10.1128/ec.00137-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The multisubunit eukaryotic Mediator complex integrates diverse positive and negative gene regulatory signals and transmits them to the core transcription machinery. Mutations in individual subunits within the complex can lead to decreased or increased transcription of certain subsets of genes, which are highly specific to the mutated subunit. Recent studies suggest a role for Mediator in epigenetic silencing. Using white-opaque morphological switching in Candida albicans as a model, we have shown that Mediator is required for the stability of both the epigenetic silenced (white) and active (opaque) states of the bistable transcription circuit driven by the master regulator Wor1. Individual deletions of eight C. albicans Mediator subunits have shown that different Mediator subunits have dramatically diverse effects on the directionality, frequency, and environmental induction of epigenetic switching. Among the Mediator deletion mutants analyzed, only Med12 has a steady-state transcriptional effect on the components of the Wor1 circuit that clearly corresponds to its effect on switching. The MED16 and MED9 genes have been found to be among a small subset of genes that are required for the stability of both the white and opaque states. Deletion of the Med3 subunit completely destabilizes the opaque state, even though the Wor1 transcription circuit is intact and can be driven by ectopic expression of Wor1. The highly impaired ability of the med3 deletion mutant to mate, even when Wor1 expression is ectopically induced, reveals that the activation of the Wor1 circuit can be decoupled from the opaque state and one of its primary biological consequences.
Collapse
|
15
|
Identification and characterization of a previously undescribed family of sequence-specific DNA-binding domains. Proc Natl Acad Sci U S A 2013; 110:7660-5. [PMID: 23610392 DOI: 10.1073/pnas.1221734110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sequence-specific DNA-binding proteins are among the most important classes of gene regulatory proteins, controlling changes in transcription that underlie many aspects of biology. In this work, we identify a transcriptional regulator from the human fungal pathogen Candida albicans that binds DNA specifically but has no detectable homology with any previously described DNA- or RNA-binding protein. This protein, named White-Opaque Regulator 3 (Wor3), regulates white-opaque switching, the ability of C. albicans to switch between two heritable cell types. We demonstrate that ectopic overexpression of WOR3 results in mass conversion of white cells to opaque cells and that deletion of WOR3 affects the stability of opaque cells at physiological temperatures. Genome-wide chromatin immunoprecipitation of Wor3 and gene expression profiling of a wor3 deletion mutant strain indicate that Wor3 is highly integrated into the previously described circuit regulating white-opaque switching and that it controls a subset of the opaque transcriptional program. We show by biochemical, genetic, and microfluidic experiments that Wor3 binds directly to DNA in a sequence-specific manner, and we identify the set of cis-regulatory sequences recognized by Wor3. Bioinformatic analyses indicate that the Wor3 family arose more recently in evolutionary time than most previously described DNA-binding domains; it is restricted to a small number of fungi that include the major fungal pathogens of humans. These observations show that new families of sequence-specific DNA-binding proteins may be restricted to small clades and suggest that current annotations--which rely on deep conservation--underestimate the fraction of genes coding for transcriptional regulators.
Collapse
|
16
|
Shi C, Li H, Zhou T. Architecture-dependent robustness in a class of multiple positive feedback loops. IET Syst Biol 2013; 7:1-10. [PMID: 23848050 PMCID: PMC8687178 DOI: 10.1049/iet-syb.2011.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 07/20/2012] [Accepted: 09/13/2012] [Indexed: 04/05/2024] Open
Abstract
Many types of multiple positive feedbacks with each having potentials to generate bistability exist extensively in natural, raising the question of why a particular architecture is present in a cell. In this study, the authors investigate multiple positive feedback loops across three classes: one-loop class, two-loop class and three-loop class, where each class is composed of double positive feedback loop (DPFL) or double negative feedback loop (DNFL) or both. Through large-scale sampling and robustness analysis, the authors find that for a given class, the homogeneous DPFL circuit (i.e. the coupled circuit that is composed of only DPFLs) is more robust than all the other circuits in generating bistable behaviour. In addition, stochastic simulation shows that the low stable state is more robust than the high stable state in homogeneous DPFL whereas the high-stable state is more robust than the low-stable state in homogeneous DNFL circuits. It was argued that this investigation provides insight into the relationship between robustness and network architecture.
Collapse
Affiliation(s)
- Changhong Shi
- School of Mathematics and Computational Science and Guangdong Province Key Laboratory of Computational Science, Sun Yat‐Sen UniversityGuangzhou510275People's Republic China
| | - Han‐xiong Li
- Department of Manufacturing Engineering and Engineering ManagementCity University of Hong KongHong KongPeople's Republic China
| | - Tianshou Zhou
- School of Mathematics and Computational Science and Guangdong Province Key Laboratory of Computational Science, Sun Yat‐Sen UniversityGuangzhou510275People's Republic China
| |
Collapse
|
17
|
Lei J, He G, Liu H, Nie Q. A delay model for noise-induced bi-directional switching. NONLINEARITY 2009; 22:2845-2859. [PMID: 20592956 PMCID: PMC2893745 DOI: 10.1088/0951-7715/22/12/003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Many biological systems can switch between two distinct states. Once switched, the system remains stable for a period of time and may switch back to its original state. A gene network with bistability is usually required for the switching and stochastic effect in the gene expression may induce such switching. A typical bistable system allows one-directional switching, in which the switch from the low state to the high state or from the high state to the low state occurs under different conditions. It is usually difficult to enable bi-directional switching such that the two switches can occur under the same condition. Here, we present a model consisting of standard positive feedback loops and an extra negative feedback loop with a time delay to study its capability to produce bi-directional switching induced by noise. We find that the time delay in the negative feedback is critical for robust bi-directional switching and the length of delay affects its switching frequency.
Collapse
Affiliation(s)
- Jinzhi Lei
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
18
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|