1
|
Zhao H, Zhang F, Guo M, Xing Y, Liu G, Zhao X, Cai L. The affinity of DNA sequences containing R5Y5 motif and TA repeats with 10.5-bp periodicity to histone octamer in vitro. J Biomol Struct Dyn 2018; 37:1935-1943. [PMID: 30044196 DOI: 10.1080/07391102.2018.1477621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nucleosome positioning along the genome is partially determined by the intrinsic DNA sequence preferences on histone. RRRRRYYYYY (R5Y5, R = Purine and Y = Pyrimidine) motif in nucleosome DNA, which was presented based on several theoretical models by Trifonov et al., might be a facilitating sequence pattern for nucleosome assembly. However, there is not a high conformity experimental evidence to support the concept that R5Y5 motif is a key element for the determination of nucleosome positioning. In this work, the ability of the canonical, H2A.Z- and H3.3-containing octamers to assemble nucleosome on DNA templates containing R5Y5 motif and TA repeats within 10.5-bp periodicity was investigated by using salt-dialysis method in vitro. The results showed that the10.5-bp periodical distributions of both R5Y5 motif and TA repeats along DNA templates can significantly promote canonical nucleosome assembly and may be key sequence factors for canonical nucleosome assembly. Compared with TA repeats within 10.5-bp periodicity, R5Y5 motif in DNA templates did not elevate H2A.Z- and H3.3-containing nucleosome formation efficiency in vitro. This result indicates that R5Y5 motif probably isn't a pivotal factor to regulate nucleosome assembly on histone variants. It is speculated that the regulatory mechanism of nucleosome assembly is different between canonical and variant histone. These conclusions can provide a deeper insight on the mechanism of nucleosome positioning. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hongyu Zhao
- a School of Life Science and Technology , Inner Mongolia University of Science and Technology , Baotou , China.,b Inner Mongolia Key Laboratory of Functional Genome Bioinformatics , Inner Mongolia University of Science and Technology , Baotou , China
| | - Fenghui Zhang
- a School of Life Science and Technology , Inner Mongolia University of Science and Technology , Baotou , China
| | - Mingxin Guo
- a School of Life Science and Technology , Inner Mongolia University of Science and Technology , Baotou , China
| | - Yongqiang Xing
- a School of Life Science and Technology , Inner Mongolia University of Science and Technology , Baotou , China.,b Inner Mongolia Key Laboratory of Functional Genome Bioinformatics , Inner Mongolia University of Science and Technology , Baotou , China
| | - Guoqing Liu
- a School of Life Science and Technology , Inner Mongolia University of Science and Technology , Baotou , China.,b Inner Mongolia Key Laboratory of Functional Genome Bioinformatics , Inner Mongolia University of Science and Technology , Baotou , China
| | - Xiujuan Zhao
- a School of Life Science and Technology , Inner Mongolia University of Science and Technology , Baotou , China.,b Inner Mongolia Key Laboratory of Functional Genome Bioinformatics , Inner Mongolia University of Science and Technology , Baotou , China
| | - Lu Cai
- a School of Life Science and Technology , Inner Mongolia University of Science and Technology , Baotou , China.,b Inner Mongolia Key Laboratory of Functional Genome Bioinformatics , Inner Mongolia University of Science and Technology , Baotou , China
| |
Collapse
|
2
|
Abstract
Nucleosome positioning is an important process required for proper genome packing and its accessibility to execute the genetic program in a cell-specific, timely manner. In the recent years hundreds of papers have been devoted to the bioinformatics, physics and biology of nucleosome positioning. The purpose of this review is to cover a practical aspect of this field, namely, to provide a guide to the multitude of nucleosome positioning resources available online. These include almost 300 experimental datasets of genome-wide nucleosome occupancy profiles determined in different cell types and more than 40 computational tools for the analysis of experimental nucleosome positioning data and prediction of intrinsic nucleosome formation probabilities from the DNA sequence. A manually curated, up to date list of these resources will be maintained at http://generegulation.info.
Collapse
|
3
|
Tripathi V, Salih B, Trifonov EN. Universal full-length nucleosome mapping sequence probe. J Biomol Struct Dyn 2014; 33:666-73. [PMID: 24606023 DOI: 10.1080/07391102.2014.891262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
For the computational sequence-directed mapping of the nucleosomes, the knowledge of the nucleosome positioning motifs - 10-11 base long sequences - and respective matrices of bendability, is not sufficient, since there is no justified way to fuse these motifs in one continuous nucleosome DNA sequence. Discovery of the strong nucleosome (SN) DNA sequences, with visible sequence periodicity allows derivation of the full-length nucleosome DNA bendability pattern as matrix or consensus sequence. The SN sequences of three species (A. thaliana, C. elegans, and H. sapiens) are aligned (512 sequences for each species), and long (115 dinucleotides) matrices of bendability derived for the species. The matrices have strong common property - alternation of runs of purine-purine (RR) and pyrimidine-pyrimidine (YY) dinucleotides, with average period 10.4 bases. On this basis the universal [R,Y] consensus of the nucleosome DNA sequence is derived, with exactly defined positions of respective penta- and hexamers RRRRR, RRRRRR, YYYYY, and YYYYYY.
Collapse
Affiliation(s)
- Vijay Tripathi
- a Genome Diversity Center, Institute of Evolution, University of Haifa , Mount Carmel, Haifa 31905 , Israel
| | | | | |
Collapse
|
4
|
Salih B, Tripathi V, Trifonov EN. Visible periodicity of strong nucleosome DNA sequences. J Biomol Struct Dyn 2013; 33:1-9. [PMID: 24266748 DOI: 10.1080/07391102.2013.855143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Fifteen years ago, Lowary and Widom assembled nucleosomes on synthetic random sequence DNA molecules, selected the strongest nucleosomes and discovered that the TA dinucleotides in these strong nucleosome sequences often appear at 10-11 bases from one another or at distances which are multiples of this period. We repeated this experiment computationally, on large ensembles of natural genomic sequences, by selecting the strongest nucleosomes--i.e. those with such distances between like-named dinucleotides, multiples of 10.4 bases, the structural and sequence period of nucleosome DNA. The analysis confirmed the periodicity of TA dinucleotides in the strong nucleosomes, and revealed as well other periodic sequence elements, notably classical AA and TT dinucleotides. The matrices of DNA bendability and their simple linear forms--nucleosome positioning motifs--are calculated from the strong nucleosome DNA sequences. The motifs are in full accord with nucleosome positioning sequences derived earlier, thus confirming that the new technique, indeed, detects strong nucleosomes. Species- and isochore-specific variations of the matrices and of the positioning motifs are demonstrated. The strong nucleosome DNA sequences manifest the highest hitherto nucleosome positioning sequence signals, showing the dinucleotide periodicities in directly observable rather than in hidden form.
Collapse
Affiliation(s)
- Bilal Salih
- a Genome Diversity Center, Institute of Evolution, University of Haifa , Mount Carmel, Haifa 31905 , Israel
| | | | | |
Collapse
|
5
|
Lifanov AP, Makeev VY, Esipova NG. Mutual disposition of nucleosomes and exons differs from common genome pattern at DNA segments containing periodic nucleotide sequences. Biophysics (Nagoya-shi) 2013. [DOI: 10.1134/s0006350913060122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Rapoport AE, Trifonov EN. Compensatory nature of Chargaff’s second parity rule. J Biomol Struct Dyn 2013; 31:1324-36. [DOI: 10.1080/07391102.2012.736757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Xing YQ, Liu GQ, Zhao XJ, Cai L. An analysis and prediction of nucleosome positioning based on information content. Chromosome Res 2013; 21:63-74. [PMID: 23435498 DOI: 10.1007/s10577-013-9338-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/20/2013] [Accepted: 01/24/2013] [Indexed: 11/26/2022]
Abstract
Nucleosome positioning plays a key role in the regulation of many biological processes. In this study, the statistical difference of information content was investigated in nucleosome and linker DNA regions across eukaryotic organisms. By analyzing the information redundancy, D k , in Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans genomes, the short-range dominance of nucleotide correlation in nucleosome and linker DNA regions was confirmed. Significant difference of the D k value between the nucleosome and linker DNA regions was also found. The underlying reason for many successful oligonucleotide-based predictions of nucleosome positioning in eukaryotic model organisms may be attributed to the short-range dominance of nucleotide correlation in the nucleosome and linker DNA regions. When applying power spectrum analysis to the nucleosome and linker DNA regions, some obvious differences in sequence periodic signals were observed. The parameter F k was introduced to describe particular base correlation. Furthermore, the support vector machine combining F k was used to classify nucleosome and linker DNA regions in Homo sapiens, Oryzias latipes, C. elegans, Candida albicans, and S. cerevisiae. Independent test demonstrated that a good performance can be achieved by using this algorithm. This result further revealed that base correlation information has an important role in nucleosome positioning.
Collapse
Affiliation(s)
- Yong-qiang Xing
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | | | | | | |
Collapse
|
8
|
Bettecken T, Frenkel ZM, Altmüller J, Nürnberg P, Trifonov EN. Apoptotic cleavage of DNA in human lymphocyte chromatin shows high sequence specificity. J Biomol Struct Dyn 2012; 30:211-6. [PMID: 22702732 DOI: 10.1080/07391102.2012.677772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Apoptotic digestion of human lymphocyte chromatin results in the appearance of large amounts of nucleosome size DNA fragments. Sequencing of these fragments and analysis of the distribution of bases around the apoptotic nucleases' cutting sites revealed a rather strong consensus sequence, not observed earlier. The consensus TAAAgTAcTTTA is characterized by complementary symmetry, resembling prokaryotic restriction sites. This consensus also possesses three TA dinucleotide steps, separated by five bases (corresponding to a half-period of the DNA double helix), suggesting strong bending of the DNA at the cut sites which is perhaps required for cutting.
Collapse
Affiliation(s)
- Thomas Bettecken
- CAGT-Center for Applied Genotyping, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, D-80804, Munich, Germany.
| | | | | | | | | |
Collapse
|
9
|
Trifonov EN. Nucleosome Positioning by Sequence, State of the Art and Apparent Finale. J Biomol Struct Dyn 2012; 27:741-6. [DOI: 10.1080/073911010010524944] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
High resolution positioning of intron ends on the nucleosomes. Gene 2011; 489:6-10. [DOI: 10.1016/j.gene.2011.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/20/2011] [Accepted: 08/26/2011] [Indexed: 01/23/2023]
|
11
|
Thirty years of multiple sequence codes. GENOMICS PROTEOMICS & BIOINFORMATICS 2011; 9:1-6. [PMID: 21641556 PMCID: PMC5054146 DOI: 10.1016/s1672-0229(11)60001-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/09/2010] [Indexed: 11/23/2022]
Abstract
An overview is presented on the status of studies on multiple codes in genetic sequences. Indirectly, the existence of multiple codes is recognized in the form of several rediscoveries of Second Genetic Code that is different each time. A due credit is given to earlier seminal work related to the codes often neglected in literature. The latest developments in the field of chromatin code are discussed, as well as perspectives of single-base resolution studies of nucleosome positioning, including rotational setting of DNA on the surface of the histone octamers.
Collapse
|
12
|
Rapoport AE, Trifonov EN. "Anticipated" nucleosome positioning pattern in prokaryotes. Gene 2011; 488:41-5. [PMID: 21884764 DOI: 10.1016/j.gene.2011.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/29/2011] [Accepted: 08/03/2011] [Indexed: 11/19/2022]
Abstract
Linguistic (word count) analysis of prokaryotic genome sequences, by Shannon N-gram extension, reveals that the dominant hidden motifs in A+T rich genomes are T(A)(T)A and G(A)(T)C with uncertain number of repeating A and T. Since prokaryotic sequences are largely protein-coding, the motifs would correspond to amphipathic alpha-helices with alternating lysine and phenylalanine as preferential polar and non-polar residues. The motifs are also known in eukaryotes, as nucleosome positioning patterns. Their existence in prokaryotes as well may serve for binding of histone-like proteins to DNA. In this case the above patterns in prokaryotes may be considered as "anticipated" nucleosome positioning patterns which, quite likely, existed in prokaryotic genomes before the evolutionary separation between eukaryotes and prokaryotes.
Collapse
Affiliation(s)
- Alexandra E Rapoport
- Genome Diversity Center, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | | |
Collapse
|
13
|
Thanakiatkrai P, Welch L. Evaluation of nucleosome forming potentials (NFPs) of forensically important STRs. Forensic Sci Int Genet 2011; 5:285-90. [DOI: 10.1016/j.fsigen.2010.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/10/2010] [Accepted: 05/07/2010] [Indexed: 01/25/2023]
|
14
|
Bettecken T, Frenkel ZM, Trifonov EN. Human nucleosomes: special role of CG dinucleotides and Alu-nucleosomes. BMC Genomics 2011; 12:273. [PMID: 21627783 PMCID: PMC3117857 DOI: 10.1186/1471-2164-12-273] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 05/31/2011] [Indexed: 11/28/2022] Open
Abstract
Background The periodical occurrence of dinucleotides with a period of 10.4 bases now is undeniably a hallmark of nucleosome positioning. Whereas many eukaryotic genomes contain visible and even strong signals for periodic distribution of dinucleotides, the human genome is rather featureless in this respect. The exact sequence features in the human genome that govern the nucleosome positioning remain largely unknown. Results When analyzing the human genome sequence with the positional autocorrelation method, we found that only the dinucleotide CG shows the 10.4 base periodicity, which is indicative of the presence of nucleosomes. There is a high occurrence of CG dinucleotides that are either 31 (10.4 × 3) or 62 (10.4 × 6) base pairs apart from one another - a sequence bias known to be characteristic of Alu-sequences. In a similar analysis with repetitive sequences removed, peaks of repeating CG motifs can be seen at positions 10, 21 and 31, the nearest integers of multiples of 10.4. Conclusions Although the CG dinucleotides are dominant, other elements of the standard nucleosome positioning pattern are present in the human genome as well. The positional autocorrelation analysis of the human genome demonstrates that the CG dinucleotide is, indeed, one visible element of the human nucleosome positioning pattern, which appears both in Alu sequences and in sequences without repeats. The dominant role that CG dinucleotides play in organizing human chromatin is to indicate the involvement of human nucleosomes in tuning the regulation of gene expression and chromatin structure, which is very likely due to cytosine-methylation/-demethylation in CG dinucleotides contained in the human nucleosomes. This is further confirmed by the positions of CG-periodical nucleosomes on Alu sequences. Alu repeats appear as monomers, dimers and trimers, harboring two to six nucleosomes in a run. Considering the exceptional role CG dinucleotides play in the nucleosome positioning, we hypothesize that Alu-nucleosomes, especially, those that form tightly positioned runs, could serve as "anchors" in organizing the chromatin in human cells.
Collapse
Affiliation(s)
- Thomas Bettecken
- CAGT-Center for Applied Genotyping, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, D-80804 Munich, Germany.
| | | | | |
Collapse
|
15
|
Frenkel ZM, Bettecken T, Trifonov EN. Nucleosome DNA sequence structure of isochores. BMC Genomics 2011; 12:203. [PMID: 21510861 PMCID: PMC3097165 DOI: 10.1186/1471-2164-12-203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/21/2011] [Indexed: 12/03/2022] Open
Abstract
Background Significant differences in G+C content between different isochore types suggest that the nucleosome positioning patterns in DNA of the isochores should be different as well. Results Extraction of the patterns from the isochore DNA sequences by Shannon N-gram extension reveals that while the general motif YRRRRRYYYYYR is characteristic for all isochore types, the dominant positioning patterns of the isochores vary between TAAAAATTTTTA and CGGGGGCCCCCG due to the large differences in G+C composition. This is observed in human, mouse and chicken isochores, demonstrating that the variations of the positioning patterns are largely G+C dependent rather than species-specific. The species-specificity of nucleosome positioning patterns is revealed by dinucleotide periodicity analyses in isochore sequences. While human sequences are showing CG periodicity, chicken isochores display AG (CT) periodicity. Mouse isochores show very weak CG periodicity only. Conclusions Nucleosome positioning pattern as revealed by Shannon N-gram extension is strongly dependent on G+C content and different in different isochores. Species-specificity of the pattern is subtle. It is reflected in the choice of preferentially periodical dinucleotides.
Collapse
Affiliation(s)
- Zakharia M Frenkel
- Genome Diversity Center, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | | | | |
Collapse
|
16
|
Rapoport AE, Frenkel ZM, Trifonov EN. Nucleosome positioning pattern derived from oligonucleotide compositions of genomic sequences. J Biomol Struct Dyn 2011; 28:567-74. [PMID: 21142224 DOI: 10.1080/07391102.2011.10531243] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Availability of nucleosome positioning pattern(s) is crucial for chromatin studies. The matrix form of the pattern has been recently derived (I. Gabdank, D. Barash, E. N. Trifonov. J Biomol Struct Dyn 26, 403-412 (2009), and E. N. Trifonov. J Biomol Struct Dyn 27, 741-746 (2010)). In its simplified linear form it is described by the motif CGRAAATTTYCG. Oligonucleotide components of the motif (say, triplets GRA, RAA, AAA, etc.) would be expected to appear in eukaryotic sequences more frequently. In this work we attempted the reconstruction of the bendability patterns for 13 genomes by a novel approach-extension of highest frequency trinucleotides. The consensus of the patterns reconstructed on the basis of trinucleotide frequencies in 13 eukaryotic genomes is derived: CRAAAATTTTYG. It conforms to the earlier established sequence motif. The reconstruction, thus, attests to the universality of the nucleosome DNA bendability pattern.
Collapse
Affiliation(s)
- Alexandra E Rapoport
- Genome Diversity Center, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel.
| | | | | |
Collapse
|
17
|
Gabdank I, Barash D, Trifonov EN. Single-base resolution nucleosome mapping on DNA sequences. J Biomol Struct Dyn 2010; 28:107-22. [PMID: 20476799 DOI: 10.1080/07391102.2010.10507347] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nucleosome DNA bendability pattern extracted from large nucleosome DNA database of C. elegans is used for construction of full length (116 dinucleotide positions) nucleosome DNA bendability matrix. The matrix can be used for sequence-directed mapping of the nucleosomes on the sequences. Several alternative positions for a given nucleosome are typically predicted, separated by multiples of nucleosome DNA period. The corresponding computer program is successfully tested on best known experimental examples of accurately positioned nucleosomes. The uncertainty of the computational mapping is +/-1 base. The procedure is placed on publicly accessible server and can be applied to any DNA sequence of interest.
Collapse
Affiliation(s)
- I Gabdank
- Department of Computer Science, Ben Gurion University of the Negev, P.O.B 653 Be'er Sheva 84105, Israel.
| | | | | |
Collapse
|
18
|
Nair TM. Sequence periodicity in nucleosomal DNA and intrinsic curvature. BMC STRUCTURAL BIOLOGY 2010; 10 Suppl 1:S8. [PMID: 20487515 PMCID: PMC2873831 DOI: 10.1186/1472-6807-10-s1-s8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. RESULTS Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. CONCLUSIONS The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.
Collapse
Affiliation(s)
- T Murlidharan Nair
- Department of Biological sciences, Indiana University South Bend, 1700 Mishawaka Ave, South Bend, IN-46634, USA.
| |
Collapse
|