Dai J. New insights into a hot environment for early life.
ENVIRONMENTAL MICROBIOLOGY REPORTS 2017;
9:203-210. [PMID:
28276199 DOI:
10.1111/1758-2229.12528]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Investigating the physical-chemical setting of early life is a challenging task. In this contribution, the author attempted to introduce a provocative concept from cosmology - cosmic microwave background (CMB), which is the residual thermal radiation from a hot early Universe - to the field. For this purpose, the author revisited a recently deduced biomarker, the 1,6-anhydro bond of sugars in bacteria. In vitro, the 1,6-anhydro bond of sugars reflects and captures residual thermal radiation in thermochemical processes and therefore is somewhat analogous to CMB. In vivo, the formation process of the 1,6-anhydro bond of sugars on the peptidoglycan of prokaryotic cell wall is parallel to in vitro processes, suggesting that the 1,6-anhydro bond is an ideal CMB-like analogue that suggests a hot setting for early life. The CMB-like 1,6-anhydro bond is involved in the life cycle of viruses and the metabolism of eukaryotes, underlying this notion. From a novel perspective, the application of the concept of the CMB to microbial ecology may give new insights into a hot environment, such as hydrothermal vents, supporting early life and providing hypotheses to test in molecular palaeontology.
Collapse