1
|
Roy S, Pal S, Manoj A, Kakarla S, Padilla JV, Alajmi M. A Fokker-Planck Framework for Parameter Estimation and Sensitivity Analysis in Colon Cancer. AIP CONFERENCE PROCEEDINGS 2022; 2522:070005. [PMID: 36276480 PMCID: PMC9583768 DOI: 10.1063/5.0100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new stochastic framework for parameter estimation and uncertainty quantification in colon cancer-induced immune response is presented. The dynamics of colon cancer is given by a stochastic process that captures the inherent randomness in the system. The stochastic framework is based on the Fokker-Planck equation that represents the evolution of the probability density function corresponding to the stochastic process. An optimization problem is formulated that takes input individual patient data with randomness present, and is solved to obtain the unknown parameters corresponding to the individual tumor characteristics. Furthermore, sensitivity analysis of the optimal parameter set is performed to determine the parameters that need to be controlled, thus, providing information of the type of drugs that can be used for treatment.
Collapse
Affiliation(s)
- S. Roy
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019-0408, USA
| | - S. Pal
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019-0408, USA
| | - A. Manoj
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0408, USA
| | - S. Kakarla
- Department of Computer Science, The University of Texas at Arlington, Arlington, TX 76019-0408, USA
| | - J. V. Padilla
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019-0408, USA
| | - M. Alajmi
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019-0408, USA
| |
Collapse
|
2
|
Kirshtein A, Akbarinejad S, Hao W, Le T, Su S, Aronow RA, Shahriyari L. Data Driven Mathematical Model of Colon Cancer Progression. J Clin Med 2020; 9:E3947. [PMID: 33291412 PMCID: PMC7762015 DOI: 10.3390/jcm9123947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Every colon cancer has its own unique characteristics, and therefore may respond differently to identical treatments. Here, we develop a data driven mathematical model for the interaction network of key components of immune microenvironment in colon cancer. We estimate the relative abundance of each immune cell from gene expression profiles of tumors, and group patients based on their immune patterns. Then we compare the tumor sensitivity and progression in each of these groups of patients, and observe differences in the patterns of tumor growth between the groups. For instance, in tumors with a smaller density of naive macrophages than activated macrophages, a higher activation rate of macrophages leads to an increase in cancer cell density, demonstrating a negative effect of macrophages. Other tumors however, exhibit an opposite trend, showing a positive effect of macrophages in controlling tumor size. Although the results indicate that for all patients the size of the tumor is sensitive to the parameters related to macrophages, such as their activation and death rate, this research demonstrates that no single biomarker could predict the dynamics of tumors.
Collapse
Affiliation(s)
- Arkadz Kirshtein
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003-9305, USA; (A.K.); (S.A.); (T.L.); (S.S.); (R.A.A.)
| | - Shaya Akbarinejad
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003-9305, USA; (A.K.); (S.A.); (T.L.); (S.S.); (R.A.A.)
| | - Wenrui Hao
- Department of Mathematics, Pennsylvania State University, University Park, State College, PA 16802, USA;
| | - Trang Le
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003-9305, USA; (A.K.); (S.A.); (T.L.); (S.S.); (R.A.A.)
| | - Sumeyye Su
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003-9305, USA; (A.K.); (S.A.); (T.L.); (S.S.); (R.A.A.)
| | - Rachel A. Aronow
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003-9305, USA; (A.K.); (S.A.); (T.L.); (S.S.); (R.A.A.)
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003-9305, USA; (A.K.); (S.A.); (T.L.); (S.S.); (R.A.A.)
| |
Collapse
|
3
|
Andersen M, Sajid Z, Pedersen RK, Gudmand-Hoeyer J, Ellervik C, Skov V, Kjær L, Pallisgaard N, Kruse TA, Thomassen M, Troelsen J, Hasselbalch HC, Ottesen JT. Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development. PLoS One 2017; 12:e0183620. [PMID: 28859112 PMCID: PMC5578482 DOI: 10.1371/journal.pone.0183620] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs in the biological continuum from early cancer stage to the advanced myelofibrosis stage, the MPNs being described as "A Human Inflammation Model for Cancer Development". This novel concept has been built upon clinical, experimental, genomic, immunological and not least epidemiological studies. Only a few studies have described the development of MPNs by mathematical models, and none have addressed the role of inflammation for clonal evolution and disease progression. Herein, we aim at using mathematical modelling to substantiate the concept of chronic inflammation as an important trigger and driver of MPNs.The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model. Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal evolution and an important driving force for MPN disease progression. Our findings support intervention at the earliest stage of cancer development to target the malignant clone and dampen concomitant inflammation.
Collapse
Affiliation(s)
- Morten Andersen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Zamra Sajid
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Rasmus K. Pedersen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Christina Ellervik
- Department of Laboratory Medicine at Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Niels Pallisgaard
- Department of Pathology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Torben A. Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jesper Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Johnny T. Ottesen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
4
|
Christley S, Cockrell C, An G. Computational Studies of the Intestinal Host-Microbiota Interactome. COMPUTATION (BASEL, SWITZERLAND) 2015; 3:2-28. [PMID: 34765258 PMCID: PMC8580329 DOI: 10.3390/computation3010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A large and growing body of research implicates aberrant immune response and compositional shifts of the intestinal microbiota in the pathogenesis of many intestinal disorders. The molecular and physical interaction between the host and the microbiota, known as the host-microbiota interactome, is one of the key drivers in the pathophysiology of many of these disorders. This host-microbiota interactome is a set of dynamic and complex processes, and needs to be treated as a distinct entity and subject for study. Disentangling this complex web of interactions will require novel approaches, using a combination of data-driven bioinformatics with knowledge-driven computational modeling. This review describes the computational approaches for investigating the host-microbiota interactome, with emphasis on the human intestinal tract and innate immunity, and highlights open challenges and existing gaps in the computation methodology for advancing our knowledge about this important facet of human health.
Collapse
Affiliation(s)
- Scott Christley
- Department of Surgery, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Chase Cockrell
- Department of Surgery, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Gary An
- Department of Surgery, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|