1
|
Ayensa-Jiménez J, Doweidar MH, Doblaré M, Gaffney EA. A Mathematical Modelling Study of Chemotactic Dynamics in Cell Cultures: The Impact of Spatio-temporal Heterogeneity. Bull Math Biol 2023; 85:98. [PMID: 37684435 PMCID: PMC10491576 DOI: 10.1007/s11538-023-01194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/04/2023] [Indexed: 09/10/2023]
Abstract
As motivated by studies of cellular motility driven by spatiotemporal chemotactic gradients in microdevices, we develop a framework for constructing approximate analytical solutions for the location, speed and cellular densities for cell chemotaxis waves in heterogeneous fields of chemoattractant from the underlying partial differential equation models. In particular, such chemotactic waves are not in general translationally invariant travelling waves, but possess a spatial variation that evolves in time, and may even oscillate back and forth in time, according to the details of the chemotactic gradients. The analytical framework exploits the observation that unbiased cellular diffusive flux is typically small compared to chemotactic fluxes and is first developed and validated for a range of exemplar scenarios. The framework is subsequently applied to more complex models considering the chemoattractant dynamics under more general settings, potentially including those of relevance for representing pathophysiology scenarios in microdevice studies. In particular, even though solutions cannot be constructed in all cases, a wide variety of scenarios can be considered analytically, firstly providing global insight into the important mechanisms and features of cell motility in complex spatiotemporal fields of chemoattractant. Such analytical solutions also provide a means of rapid evaluation of model predictions, with the prospect of application in computationally demanding investigations relating theoretical models and experimental observation, such as Bayesian parameter estimation.
Collapse
Affiliation(s)
- Jacobo Ayensa-Jiménez
- Aragon Institute of Engineering Research, University of Zaragoza, Mariano Esquillor, s.n., 50018 Zaragoza, Spain
- Tissue Microenvironment Laboratory (TME Lab), Institute for Health Research Aragón, San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Mohamed H. Doweidar
- Aragon Institute of Engineering Research, University of Zaragoza, Mariano Esquillor, s.n., 50018 Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, María de Luna s.n., 50018 Zaragoza, Spain
| | - Manuel Doblaré
- Aragon Institute of Engineering Research, University of Zaragoza, Mariano Esquillor, s.n., 50018 Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, María de Luna s.n., 50018 Zaragoza, Spain
- Tissue Microenvironment Laboratory (TME Lab), Institute for Health Research Aragón, San Juan Bosco, 13, 50009 Zaragoza, Spain
- Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Eamonn A. Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG UK
| |
Collapse
|
2
|
Ahmed RK, Abdalrahman T, Davies NH, Vermolen F, Franz T. Mathematical model of mechano-sensing and mechanically induced collective motility of cells on planar elastic substrates. Biomech Model Mechanobiol 2023; 22:809-824. [PMID: 36814004 DOI: 10.1007/s10237-022-01682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/28/2022] [Indexed: 02/24/2023]
Abstract
Cells mechanically interact with their environment to sense, for example, topography, elasticity and mechanical cues from other cells. Mechano-sensing has profound effects on cellular behaviour, including motility. The current study aims to develop a mathematical model of cellular mechano-sensing on planar elastic substrates and demonstrate the model's predictive capabilities for the motility of individual cells in a colony. In the model, a cell is assumed to transmit an adhesion force, derived from a dynamic focal adhesion integrin density, that locally deforms a substrate, and to sense substrate deformation originating from neighbouring cells. The substrate deformation from multiple cells is expressed as total strain energy density with a spatially varying gradient. The magnitude and direction of the gradient at the cell location define the cell motion. Cell-substrate friction, partial motion randomness, and cell death and division are included. The substrate deformation by a single cell and the motility of two cells are presented for several substrate elasticities and thicknesses. The collective motility of 25 cells on a uniform substrate mimicking the closure of a circular wound of 200 µm is predicted for deterministic and random motion. Cell motility on substrates with varying elasticity and thickness is explored for four cells and 15 cells, the latter again mimicking wound closure. Wound closure by 45 cells is used to demonstrate the simulation of cell death and division during migration. The mathematical model can adequately simulate the mechanically induced collective cell motility on planar elastic substrates. The model is suitable for extension to other cell and substrates shapes and the inclusion of chemotactic cues, offering the potential to complement in vitro and in vivo studies.
Collapse
Affiliation(s)
- Riham K Ahmed
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research Centre, University of Cape Town, Observatory, South Africa.
| | - Tamer Abdalrahman
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research Centre, University of Cape Town, Observatory, South Africa
- Computational Mechanobiology, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité Universitätsmedizin, Berlin, Germany
| | - Neil H Davies
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, MRC IUCHRU, University of Cape Town, Observatory, South Africa
| | - Fred Vermolen
- Computational Mathematics Group, Department of Mathematics and Statistics, University of Hasselt, Diepenbeek, Belgium
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research Centre, University of Cape Town, Observatory, South Africa
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Dawson JE, Sellmann T, Porath K, Bader R, van Rienen U, Appali R, Köhling R. Cell-cell interactions and fluctuations in the direction of motility promote directed migration of osteoblasts in direct current electrotaxis. Front Bioeng Biotechnol 2022; 10:995326. [PMID: 36277406 PMCID: PMC9582662 DOI: 10.3389/fbioe.2022.995326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Under both physiological (development, regeneration) and pathological conditions (cancer metastasis), cells migrate while sensing environmental cues in the form of mechanical, chemical or electrical stimuli. In the case of bone tissue, osteoblast migration is essential in bone regeneration. Although it is known that osteoblasts respond to exogenous electric fields, the underlying mechanism of electrotactic collective movement of human osteoblasts is unclear. Here, we present a computational model that describes the osteoblast cell migration in a direct current electric field as the motion of a collection of active self-propelled particles and takes into account fluctuations in the direction of single-cell migration, finite-range cell-cell interactions, and the interaction of a cell with the external electric field. By comparing this model with in vitro experiments in which human primary osteoblasts are exposed to a direct current electric field of different field strengths, we show that cell-cell interactions and fluctuations in the migration direction promote anode-directed collective migration of osteoblasts.
Collapse
Affiliation(s)
- Jonathan Edward Dawson
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Chemistry and Physics, Augusta University, Augusta, GA, United States
- *Correspondence: Jonathan Edward Dawson, ; Rüdiger Köhling,
| | - Tina Sellmann
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Rainer Bader
- Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Biomechanics and Implant Research Lab, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Center for Translational Neuroscience Research, Rostock University Medical Center, Rostock, Germany
- *Correspondence: Jonathan Edward Dawson, ; Rüdiger Köhling,
| |
Collapse
|
4
|
Urdeitx P, Doweidar MH. Enhanced Piezoelectric Fibered Extracellular Matrix to Promote Cardiomyocyte Maturation and Tissue Formation: A 3D Computational Model. BIOLOGY 2021; 10:biology10020135. [PMID: 33572184 PMCID: PMC7914718 DOI: 10.3390/biology10020135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022]
Abstract
Mechanical and electrical stimuli play a key role in tissue formation, guiding cell processes such as cell migration, differentiation, maturation, and apoptosis. Monitoring and controlling these stimuli on in vitro experiments is not straightforward due to the coupling of these different stimuli. In addition, active and reciprocal cell-cell and cell-extracellular matrix interactions are essential to be considered during formation of complex tissue such as myocardial tissue. In this sense, computational models can offer new perspectives and key information on the cell microenvironment. Thus, we present a new computational 3D model, based on the Finite Element Method, where a complex extracellular matrix with piezoelectric properties interacts with cardiac muscle cells during the first steps of tissue formation. This model includes collective behavior and cell processes such as cell migration, maturation, differentiation, proliferation, and apoptosis. The model has employed to study the initial stages of in vitro cardiac aggregate formation, considering cell-cell junctions, under different extracellular matrix configurations. Three different cases have been purposed to evaluate cell behavior in fibered, mechanically stimulated fibered, and mechanically stimulated piezoelectric fibered extra-cellular matrix. In this last case, the cells are guided by the coupling of mechanical and electrical stimuli. Accordingly, the obtained results show the formation of more elongated groups and enhancement in cell proliferation.
Collapse
Affiliation(s)
- Pau Urdeitx
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, 50018 Zaragoza, Spain;
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
| | - Mohamed H. Doweidar
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, 50018 Zaragoza, Spain;
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
5
|
Ryan CNM, Doulgkeroglou MN, Zeugolis DI. Electric field stimulation for tissue engineering applications. BMC Biomed Eng 2021; 3:1. [PMID: 33397515 PMCID: PMC7784019 DOI: 10.1186/s42490-020-00046-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023] Open
Abstract
Electric fields are involved in numerous physiological processes, including directional embryonic development and wound healing following injury. To study these processes in vitro and/or to harness electric field stimulation as a biophysical environmental cue for organised tissue engineering strategies various electric field stimulation systems have been developed. These systems are overall similar in design and have been shown to influence morphology, orientation, migration and phenotype of several different cell types. This review discusses different electric field stimulation setups and their effect on cell response.
Collapse
Affiliation(s)
- Christina N M Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Meletios N Doulgkeroglou
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland. .,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland. .,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland.
| |
Collapse
|
6
|
Ayensa-Jiménez J, Pérez-Aliacar M, Randelovic T, Oliván S, Fernández L, Sanz-Herrera JA, Ochoa I, Doweidar MH, Doblaré M. Mathematical formulation and parametric analysis of in vitro cell models in microfluidic devices: application to different stages of glioblastoma evolution. Sci Rep 2020; 10:21193. [PMID: 33273574 PMCID: PMC7713081 DOI: 10.1038/s41598-020-78215-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022] Open
Abstract
In silico models and computer simulation are invaluable tools to better understand complex biological processes such as cancer evolution. However, the complexity of the biological environment, with many cell mechanisms in response to changing physical and chemical external stimuli, makes the associated mathematical models highly non-linear and multiparametric. One of the main problems of these models is the determination of the parameters' values, which are usually fitted for specific conditions, making the conclusions drawn difficult to generalise. We analyse here an important biological problem: the evolution of hypoxia-driven migratory structures in Glioblastoma Multiforme (GBM), the most aggressive and lethal primary brain tumour. We establish a mathematical model considering the interaction of the tumour cells with oxygen concentration in what is called the go or grow paradigm. We reproduce in this work three different experiments, showing the main GBM structures (pseudopalisade and necrotic core formation), only changing the initial and boundary conditions. We prove that it is possible to obtain versatile mathematical tools which, together with a sound parametric analysis, allow to explain complex biological phenomena. We show the utility of this hybrid "biomimetic in vitro-in silico" platform to help to elucidate the mechanisms involved in cancer processes, to better understand the role of the different phenomena, to test new scientific hypotheses and to design new data-driven experiments.
Collapse
Affiliation(s)
- Jacobo Ayensa-Jiménez
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009, Zaragoza, Spain
| | - Marina Pérez-Aliacar
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009, Zaragoza, Spain
| | - Teodora Randelovic
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009, Zaragoza, Spain
| | - Sara Oliván
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009, Zaragoza, Spain
| | - Luis Fernández
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - José Antonio Sanz-Herrera
- School of Engineering, Department of Mechanics of Continuous Media and Theory of Structures, University of Seville, Camino de los descubrimientos, s/n, 41092, Sevilla, Spain
| | - Ignacio Ochoa
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Mohamed H Doweidar
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Manuel Doblaré
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain.
| |
Collapse
|
7
|
A Computational Model for Cardiomyocytes Mechano-Electric Stimulation to Enhance Cardiac Tissue Regeneration. MATHEMATICS 2020. [DOI: 10.3390/math8111875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrical and mechanical stimulations play a key role in cell biological processes, being essential in processes such as cardiac cell maturation, proliferation, migration, alignment, attachment, and organization of the contractile machinery. However, the mechanisms that trigger these processes are still elusive. The coupling of mechanical and electrical stimuli makes it difficult to abstract conclusions. In this sense, computational models can establish parametric assays with a low economic and time cost to determine the optimal conditions of in-vitro experiments. Here, a computational model has been developed, using the finite element method, to study cardiac cell maturation, proliferation, migration, alignment, and organization in 3D matrices, under mechano-electric stimulation. Different types of electric fields (continuous, pulsating, and alternating) in an intensity range of 50–350 Vm−1, and extracellular matrix with stiffnesses in the range of 10–40 kPa, are studied. In these experiments, the group’s morphology and cell orientation are compared to define the best conditions for cell culture. The obtained results are qualitatively consistent with the bibliography. The electric field orientates the cells and stimulates the formation of elongated groups. Group lengthening is observed when applying higher electric fields in lower stiffness extracellular matrix. Groups with higher aspect ratios can be obtained by electrical stimulation, with better results for alternating electric fields.
Collapse
|
8
|
Al Sarkhi AK. Hypothesis: The electrical properties of coronavirus. Electromagn Biol Med 2020; 39:433-436. [PMID: 33016156 DOI: 10.1080/15368378.2020.1830794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To help investigate the relationship between inflammatory and other symptoms of coronavirus and the protein-protein interactions (PPI) that occur between viral proteins and protein molecules of the host cell, I propose that the electrostatic discharge (ESD) exists including corona discharge to lead to ozone gas. I cite evidence in support of this hypothesis. I hope that the proposed will inspire new studies in finding effective treatments and vaccines for individuals with coronavirus disease in 2019. I suggest possible future studies that may lend more credibility to the proposed.
Collapse
Affiliation(s)
- Awaad K Al Sarkhi
- College of Science, Technology, Engineering, and Mathematics, University of Arkansas at Little Rock , Little Rock, USA
| |
Collapse
|
9
|
URDEITX PAU, FARZANEH SOLMAZ, MOUSAVI SJAMALEDDIN, DOWEIDAR MOHAMEDH. ROLE OF OXYGEN CONCENTRATION IN THE OSTEOBLASTS BEHAVIOR: A FINITE ELEMENT MODEL. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519419500647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oxygen concentration plays a key role in cell survival and viability. Besides, it has important effects on essential cellular biological processes such as cell migration, differentiation, proliferation and apoptosis. Therefore, the prediction of the cellular response to the alterations of the oxygen concentration can help significantly in the advances of cell culture research. Here, we present a 3D computational mechanotactic model to simulate all the previously mentioned cell processes under different oxygen concentrations. With this model, three cases have been studied. Starting with mesenchymal stem cells within an extracellular matrix with mechanical properties suitable for its differentiation into osteoblasts, and under different oxygen conditions to evaluate their behavior under normoxia, hypoxia and anoxia. The obtained results, which are consistent with the experimental observations, indicate that cells tend to migrate toward zones with higher oxygen concentration where they accelerate their differentiation and proliferation. This technique can be employed to control cell migration toward fracture zones to accelerate the healing process. Besides, as expected, to avoid cell apoptosis under conditions of anoxia and to avoid the inhibition of the differentiation and proliferation processes under conditions of hypoxia, the state of normoxia should be maintained throughout the entire cell-culture process.
Collapse
Affiliation(s)
- PAU URDEITX
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - SOLMAZ FARZANEH
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059, Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - S. JAMALEDDIN MOUSAVI
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059, Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - MOHAMED H. DOWEIDAR
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
10
|
Bui J, Conway DE, Heise RL, Weinberg SH. Mechanochemical Coupling and Junctional Forces during Collective Cell Migration. Biophys J 2019; 117:170-183. [PMID: 31200935 DOI: 10.1016/j.bpj.2019.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/31/2022] Open
Abstract
Cell migration, a fundamental physiological process in which cells sense and move through their surrounding physical environment, plays a critical role in development and tissue formation, as well as pathological processes, such as cancer metastasis and wound healing. During cell migration, dynamics are governed by the bidirectional interplay between cell-generated mechanical forces and the activity of Rho GTPases, a family of small GTP-binding proteins that regulate actin cytoskeleton assembly and cellular contractility. These interactions are inherently more complex during the collective migration of mechanically coupled cells because of the additional regulation of cell-cell junctional forces. In this study, we adapted a recent minimal modeling framework to simulate the interactions between mechanochemical signaling in individual cells and interactions with cell-cell junctional forces during collective cell migration. We find that migration of individual cells depends on the feedback between mechanical tension and Rho GTPase activity in a biphasic manner. During collective cell migration, waves of Rho GTPase activity mediate mechanical contraction/extension and thus synchronization throughout the tissue. Further, cell-cell junctional forces exhibit distinct spatial patterns during collective cell migration, with larger forces near the leading edge. Larger junctional force magnitudes are associated with faster collective cell migration and larger tissue size. Simulations of heterogeneous tissue migration exhibit a complex dependence on the properties of both leading and trailing cells. Computational predictions demonstrate that collective cell migration depends on both the emergent dynamics and interactions between cellular-level Rho GTPase activity and contractility and multicellular-level junctional forces.
Collapse
Affiliation(s)
- Justin Bui
- Department of Chemical Engineering, University of California Berkeley, Berkeley, California
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Seth H Weinberg
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
11
|
Rauch AD, Vuong AT, Yoshihara L, Wall WA. A coupled approach for fluid saturated poroelastic media and immersed solids for modeling cell-tissue interactions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3139. [PMID: 30070046 DOI: 10.1002/cnm.3139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
In this paper, we propose a finite element-based immersed method to treat the mechanical coupling between a deformable porous medium model (PM) and an immersed solid model (ISM). The PM is formulated as a homogenized, volume-coupled two-field model, comprising a nearly incompressible solid phase that interacts with an incompressible Darcy-Brinkman flow. The fluid phase is formulated with respect to the Lagrangian finite element mesh, following the solid phase deformation. The ISM is discretized with an independent Lagrangian mesh and may behave arbitrarily complex (it may, eg, be compressible, grow, and perform active deformations). We model two distinct types of interactions, namely, (1) the immersed fluid-structure interaction (FSI) between the ISM and the fluid phase in the PM and (2) the immersed structure-structure interaction (SSI) between the ISM and the solid phase in the PM. Within each time step, we solve both FSI and SSI, employing strongly coupled partitioned schemes. This novel finite element method establishes a main building block of an evolving computational framework for modeling and simulating complex biomechanical problems, with focus on key phenomena during cell migration. Cell movement is strongly influenced by mechanical interactions between the cell body and the surrounding tissue, ie, the extracellular matrix (ECM). In this context, the PM represents the ECM, ie, a fibrous scaffold of structural proteins interacting with interstitial flow, and the ISM represents the cell body. The FSI models the influence of fluid drag, and the SSI models the force transmission between cell and ECM at adhesions sites.
Collapse
Affiliation(s)
- Andreas D Rauch
- Institute for Computational Mechanics, Technical University of Munich, München, Germany
| | - Anh-Tu Vuong
- Institute for Computational Mechanics, Technical University of Munich, München, Germany
| | - Lena Yoshihara
- Institute for Computational Mechanics, Technical University of Munich, München, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, München, Germany
| |
Collapse
|
12
|
CERROLAZA M, NIETO F, GONZÁLEZ Y. COMPUTATION OF THE DYNAMIC COMPRESSION EFFECTS IN SPINE DISCS USING INTEGRAL METHODS. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519417501032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The computational modeling using integral methods of dynamic loading and its effects on the nutrients transport in spine discs is addressed in this work. The numerical simulation and analysis was carried out using the Boundary Element Method (BEM) and a 3D model (axisymmetric) of the disc. The boundary model was discretized using linear interpolated elements and a multi-region approach. Concentration and production of three nutrients as lactate, oxygen and glucose were obtained. The maximum lactate concentration was observed very close to the interface between the nucleus and the inner annulus. A relatively simple model discretized with 130 boundary elements yielded very similar results to these coming from more complex FEM-based models. The numerical efforts in the domain and boundary discretizations were optimized using the BEM. Our results are in good agreement with those obtained using with finite element-based models. As expected, the dynamic loading increased the oxygen–glucose consumption and the lactate production, thus leading to a poor oxygen–glucose concentration at the nucleus of the disc. All of that is a favorable environment for a disc degeneration mechanism to be developed.
Collapse
Affiliation(s)
- M. CERROLAZA
- International Center of Numerical Methods in Engineering, Polytechnic University of Catalonia, c/Gran Capitá s/n, 08034, Barcelona, Spain
| | - F. NIETO
- National Institute of Bioengineering, Central University of Venezuela, Caracas, Venezuela
| | - Y. GONZÁLEZ
- National Institute of Bioengineering, Central University of Venezuela, Caracas, Venezuela
- Faculty of Industrial Engineering, University of Guayaquil, Ecuador
| |
Collapse
|
13
|
Lalli ML, Wojeski B, Asthagiri AR. Label-Free Automated Cell Tracking: Analysis of the Role of E-cadherin Expression in Collective Electrotaxis. Cell Mol Bioeng 2017; 10:89-101. [PMID: 31719851 PMCID: PMC6816619 DOI: 10.1007/s12195-016-0471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
Collective cell migration plays an important role in wound healing, organogenesis, and the progression of metastatic disease. Analysis of collective migration typically involves laborious and time-consuming manual tracking of individual cells within cell clusters over several dozen or hundreds of frames. Herein, we develop a label-free, automated algorithm to identify and track individual epithelial cells within a free-moving cluster. We use this algorithm to analyze the effects of partial E-cadherin knockdown on collective migration of MCF-10A breast epithelial cells directed by an electric field. Our data show that E-cadherin knockdown in free-moving cell clusters diminishes electrotactic potential, with empty vector MCF-10A cells showing 16% higher directedness than cells with E-cadherin knockdown. Decreased electrotaxis is also observed in isolated cells at intermediate electric fields, suggesting an adhesion-independent role of E-cadherin in regulating electrotaxis. In additional support of an adhesion-independent role of E-cadherin, isolated cells with reduced E-cadherin expression reoriented within an applied electric field 60% more quickly than control. These results have implications for the role of E-cadherin expression in electrotaxis and demonstrate proof-of-concept of an automated algorithm that is broadly applicable to the analysis of collective migration in a wide range of physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Mark L. Lalli
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115 USA
| | - Brooke Wojeski
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115 USA
| | - Anand R. Asthagiri
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115 USA
- Department of Bioengineering, Northeastern University, Boston, MA USA
- Department of Biology, Northeastern University, Boston, MA USA
| |
Collapse
|
14
|
Bordeleau F, Reinhart-King CA. Tuning cell migration: contractility as an integrator of intracellular signals from multiple cues. F1000Res 2016; 5. [PMID: 27508074 PMCID: PMC4962296 DOI: 10.12688/f1000research.7884.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
There has been immense progress in our understanding of the factors driving cell migration in both two-dimensional and three-dimensional microenvironments over the years. However, it is becoming increasingly evident that even though most cells share many of the same signaling molecules, they rarely respond in the same way to migration cues. To add to the complexity, cells are generally exposed to multiple cues simultaneously, in the form of growth factors and/or physical cues from the matrix. Understanding the mechanisms that modulate the intracellular signals triggered by multiple cues remains a challenge. Here, we will focus on the molecular mechanism involved in modulating cell migration, with a specific focus on how cell contractility can mediate the crosstalk between signaling initiated at cell-matrix adhesions and growth factor receptors.
Collapse
Affiliation(s)
- Francois Bordeleau
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
15
|
Mousavi SJ, Doweidar MH. Numerical modeling of cell differentiation and proliferation in force-induced substrates via encapsulated magnetic nanoparticles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 130:106-117. [PMID: 27208526 DOI: 10.1016/j.cmpb.2016.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Cell migration, differentiation, proliferation and apoptosis are the main processes in tissue regeneration. Mesenchymal Stem Cells have the potential to differentiate into many cell phenotypes such as tissue- or organ-specific cells to perform special functions. Experimental observations illustrate that differentiation and proliferation of these cells can be regulated according to internal forces induced within their Extracellular Matrix. The process of how exactly they interpret and transduce these signals is not well understood. METHODS A previously developed three-dimensional (3D) computational model is here extended and employed to study how force-free substrates and force-induced substrate control cell differentiation and/or proliferation during the mechanosensing process. Consistent with experimental observations, it is assumed that cell internal deformation (a mechanical signal) in correlation with the cell maturation state directly triggers cell differentiation and/or proliferation. The Extracellular Matrix is modeled as Neo-Hookean hyperelastic material assuming that cells are cultured within 3D nonlinear hydrogels. RESULTS In agreement with well-known experimental observations, the findings here indicate that within neurogenic (0.1-1kPa), chondrogenic (20-25kPa) and osteogenic (30-45kPa) substrates, Mesenchymal Stem Cells differentiation and proliferation can be precipitated by inducing the substrate with an internal force. Therefore, cells require a longer time to grow and maturate within force-free substrates than within force-induced substrates. In the instance of Mesenchymal Stem Cells differentiation into a compatible phenotype, the magnitude of the net traction force increases within chondrogenic and osteogenic substrates while it reduces within neurogenic substrates. This is consistent with experimental studies and numerical works recently published by the same authors. However, in all cases the magnitude of the net traction force considerably increases at the instant of cell proliferation because of cell-cell interaction. CONCLUSIONS The present model provides new perspectives to delineate the role of force-induced substrates in remotely controlling the cell fate during cell-matrix interaction, which open the door for new tissue regeneration methodologies.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Mohamed Hamdy Doweidar
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| |
Collapse
|
16
|
Simulation of extracellular matrix remodeling by fibroblast cells in soft three-dimensional bioresorbable scaffolds. Biomech Model Mechanobiol 2016; 15:1685-1698. [DOI: 10.1007/s10237-016-0791-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
|
17
|
Bookholt FD, Monsuur HN, Gibbs S, Vermolen FJ. Mathematical modelling of angiogenesis using continuous cell-based models. Biomech Model Mechanobiol 2016; 15:1577-1600. [PMID: 27037954 PMCID: PMC5106520 DOI: 10.1007/s10237-016-0784-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/15/2016] [Indexed: 11/25/2022]
Abstract
In this work, we develop a mathematical formalism based on a 3D in vitro model that is used to simulate the early stages of angiogenesis. The model treats cells as individual entities that are migrating as a result of chemotaxis and durotaxis. The phenotypes used here are endothelial cells that can be distinguished into stalk and tip (leading) cells. The model takes into account the dynamic interaction and interchange between both phenotypes. Next to the cells, the model takes into account several proteins such as vascular endothelial growth factor, delta-like ligand 4, urokinase plasminogen activator and matrix metalloproteinase, which are computed through the solution of a system of reaction–diffusion equations. The method used in the present study is classified into the hybrid approaches. The present study, implemented in three spatial dimensions, demonstrates the feasibility of the approach that is qualitatively confirmed by experimental results.
Collapse
Affiliation(s)
- F D Bookholt
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
| | - H N Monsuur
- Department of Dermatology (VUmc), VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - S Gibbs
- Department of Dermatology (VUmc), VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - F J Vermolen
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
18
|
Gordon R. Partial synchronization of the colonial diatom Bacillaria "paradoxa". RESEARCH IDEAS AND OUTCOMES 2016. [DOI: 10.3897/rio.2.e7869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
19
|
Manzano S, Manzano R, Doblaré M, Doweidar MH. Altered swelling and ion fluxes in articular cartilage as a biomarker in osteoarthritis and joint immobilization: a computational analysis. J R Soc Interface 2015; 12:20141090. [PMID: 25392400 DOI: 10.1098/rsif.2014.1090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In healthy cartilage, mechano-electrochemical phenomena act together to maintain tissue homeostasis. Osteoarthritis (OA) and degenerative diseases disrupt this biological equilibrium by causing structural deterioration and subsequent dysfunction of the tissue. Swelling and ion flux alteration as well as abnormal ion distribution are proposed as primary indicators of tissue degradation. In this paper, we present an extension of a previous three-dimensional computational model of the cartilage behaviour developed by the authors to simulate the contribution of the main tissue components in its behaviour. The model considers the mechano-electrochemical events as concurrent phenomena in a three-dimensional environment. This model has been extended here to include the effect of repulsion of negative charges attached to proteoglycans. Moreover, we have studied the fluctuation of these charges owning to proteoglycan variations in healthy and pathological articular cartilage. In this sense, standard patterns of healthy and degraded tissue behaviour can be obtained which could be a helpful diagnostic tool. By introducing measured properties of unhealthy cartilage into the computational model, the severity of tissue degeneration can be predicted avoiding complex tissue extraction and subsequent in vitro analysis. In this work, the model has been applied to monitor and analyse cartilage behaviour at different stages of OA and in both short (four, six and eight weeks) and long-term (11 weeks) fully immobilized joints. Simulation results showed marked differences in the corresponding swelling phenomena, in outgoing cation fluxes and in cation distributions. Furthermore, long-term immobilized patients display similar swelling as well as fluxes and distribution of cations to patients in the early stages of OA, thus, preventive treatments are highly recommended to avoid tissue deterioration.
Collapse
Affiliation(s)
- Sara Manzano
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Raquel Manzano
- LAGENBIO-I3A, Veterinary School, University of Zaragoza, Spain
| | - Manuel Doblaré
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Mohamed Hamdy Doweidar
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
20
|
Mousavi SJ, Hamdy Doweidar M. Role of Mechanical Cues in Cell Differentiation and Proliferation: A 3D Numerical Model. PLoS One 2015; 10:e0124529. [PMID: 25933372 PMCID: PMC4416758 DOI: 10.1371/journal.pone.0124529] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/16/2015] [Indexed: 12/28/2022] Open
Abstract
Cell differentiation, proliferation and migration are essential processes in tissue regeneration. Experimental evidence confirms that cell differentiation or proliferation can be regulated according to the extracellular matrix stiffness. For instance, mesenchymal stem cells (MSCs) can differentiate to neuroblast, chondrocyte or osteoblast within matrices mimicking the stiffness of their native substrate. However, the precise mechanisms by which the substrate stiffness governs cell differentiation or proliferation are not well known. Therefore, a mechano-sensing computational model is here developed to elucidate how substrate stiffness regulates cell differentiation and/or proliferation during cell migration. In agreement with experimental observations, it is assumed that internal deformation of the cell (a mechanical signal) together with the cell maturation state directly coordinates cell differentiation and/or proliferation. Our findings indicate that MSC differentiation to neurogenic, chondrogenic or osteogenic lineage specifications occurs within soft (0.1-1 kPa), intermediate (20-25 kPa) or hard (30-45 kPa) substrates, respectively. These results are consistent with well-known experimental observations. Remarkably, when a MSC differentiate to a compatible phenotype, the average net traction force depends on the substrate stiffness in such a way that it might increase in intermediate and hard substrates but it would reduce in a soft matrix. However, in all cases the average net traction force considerably increases at the instant of cell proliferation because of cell-cell interaction. Moreover cell differentiation and proliferation accelerate with increasing substrate stiffness due to the decrease in the cell maturation time. Thus, the model provides insights to explain the hypothesis that substrate stiffness plays a key role in regulating cell fate during mechanotaxis.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Group of Structural Mechanics and Materials Modeling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Mohamed Hamdy Doweidar
- Group of Structural Mechanics and Materials Modeling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
- * E-mail:
| |
Collapse
|
21
|
Manzano S, Moreno-Loshuertos R, Doblaré M, Ochoa I, Hamdy Doweidar M. Structural biology response of a collagen hydrogel synthetic extracellular matrix with embedded human fibroblast: computational and experimental analysis. Med Biol Eng Comput 2015; 53:721-35. [PMID: 25835213 DOI: 10.1007/s11517-015-1277-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/16/2015] [Indexed: 12/20/2022]
Abstract
Adherent cells exert contractile forces which play an important role in the spatial organization of the extracellular matrix (ECM). Due to these forces, the substrate experiments a volume reduction leading to a characteristic shape. ECM contraction is a key process in many biological processes such as embryogenesis, morphogenesis and wound healing. However, little is known about the specific parameters that control this process. With this aim, we present a 3D computational model able to predict the contraction process of a hydrogel matrix due to cell-substrate mechanical interaction. It considers cell-generated forces, substrate deformation, ECM density, cellular migration and proliferation. The model also predicts the cellular spatial distribution and concentration needed to reproduce the contraction process and confirms the minimum value of cellular concentration necessary to initiate the process observed experimentally. The obtained continuum formulation has been implemented in a finite element framework. In parallel, in vitro experiments have been performed to obtain the main model parameters and to validate it. The results demonstrate that cellular forces, migration and proliferation are acting simultaneously to display the ECM contraction.
Collapse
Affiliation(s)
- Sara Manzano
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (13A), University of Zaragoza, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
22
|
Mousavi SJ, Hamdy Doweidar M. Three-dimensional numerical model of cell morphology during migration in multi-signaling substrates. PLoS One 2015; 10:e0122094. [PMID: 25822332 PMCID: PMC4379188 DOI: 10.1371/journal.pone.0122094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/21/2015] [Indexed: 12/19/2022] Open
Abstract
Cell Migration associated with cell shape changes are of central importance in many biological processes ranging from morphogenesis to metastatic cancer cells. Cell movement is a result of cyclic changes of cell morphology due to effective forces on cell body, leading to periodic fluctuations of the cell length and cell membrane area. It is well-known that the cell can be guided by different effective stimuli such as mechanotaxis, thermotaxis, chemotaxis and/or electrotaxis. Regulation of intracellular mechanics and cell's physical interaction with its substrate rely on control of cell shape during cell migration. In this notion, it is essential to understand how each natural or external stimulus may affect the cell behavior. Therefore, a three-dimensional (3D) computational model is here developed to analyze a free mode of cell shape changes during migration in a multi-signaling micro-environment. This model is based on previous models that are presented by the same authors to study cell migration with a constant spherical cell shape in a multi-signaling substrates and mechanotaxis effect on cell morphology. Using the finite element discrete methodology, the cell is represented by a group of finite elements. The cell motion is modeled by equilibrium of effective forces on cell body such as traction, protrusion, electrostatic and drag forces, where the cell traction force is a function of the cell internal deformations. To study cell behavior in the presence of different stimuli, the model has been employed in different numerical cases. Our findings, which are qualitatively consistent with well-known related experimental observations, indicate that adding a new stimulus to the cell substrate pushes the cell to migrate more directionally in more elongated form towards the more effective stimuli. For instance, the presence of thermotaxis, chemotaxis and electrotaxis can further move the cell centroid towards the corresponding stimulus, respectively, diminishing the mechanotaxis effect. Besides, the stronger stimulus imposes a greater cell elongation and more cell membrane area. The present model not only provides new insights into cell morphology in a multi-signaling micro-environment but also enables us to investigate in more precise way the cell migration in the presence of different stimuli.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Group of Structural Mechanics and Materials Modeling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Mohamed Hamdy Doweidar
- Group of Structural Mechanics and Materials Modeling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
23
|
Mechanical boundary conditions bias fibroblast invasion in a collagen-fibrin wound model. Biophys J 2014; 106:932-43. [PMID: 24559996 DOI: 10.1016/j.bpj.2013.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/17/2013] [Accepted: 12/02/2013] [Indexed: 11/22/2022] Open
Abstract
Because fibroblasts deposit the collagen matrix that determines the mechanical integrity of scar tissue, altering fibroblast invasion could alter wound healing outcomes. Anisotropic mechanical boundary conditions (restraint, stretch, or tension) could affect the rate of fibroblast invasion, but their importance relative to the prototypical drivers of fibroblast infiltration during wound healing--cell and chemokine concentration gradients--is unknown. We tested whether anisotropic mechanical boundary conditions affected the directionality and speed of fibroblasts migrating into a three-dimensional model wound, which could simultaneously expose fibroblasts to mechanical, structural, steric, and chemical guidance cues. We created fibrin-filled slits in fibroblast-populated collagen gels and applied uniaxial mechanical restraint along the short or long axis of the fibrin wounds. Anisotropic mechanical conditions increased the efficiency of fibroblast invasion by guiding fibroblasts without increasing their migration speed. The migration behavior could be modeled as a biased random walk, where the bias due to multiple guidance cues was accounted for in the shape of a displacement orientation probability distribution. Taken together, modeling and experiments suggested an effect of strain anisotropy, rather than strain-induced fiber alignment, on fibroblast invasion.
Collapse
|
24
|
Uludağ H. Grand challenges in biomaterials. Front Bioeng Biotechnol 2014; 2:43. [PMID: 25368868 PMCID: PMC4202113 DOI: 10.3389/fbioe.2014.00043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/02/2014] [Indexed: 11/13/2022] Open
|
25
|
Abstract
Cell morphology plays a critical role in many biological processes, such as cell migration, tissue development, wound healing and tumor growth. Recent investigations demonstrate that, among other stimuli, cells adapt their shapes according to their substrate stiffness. Until now, the development of this process has not been clear. Therefore, in this work, a new three-dimensional (3D) computational model for cell morphology has been developed. This model is based on a previous cell migration model presented by the same authors. The new model considers that during cell-substrate interaction, cell shape is governed by internal cell deformation, which leads to an accurate prediction of the cell shape according to the mechanical characteristic of its surrounding micro-environment. To study this phenomenon, the model has been applied to different numerical cases. The obtained results, which are qualitatively consistent with well-known related experimental works, indicate that cell morphology not only depends on substrate stiffness but also on the substrate boundary conditions. A cell located within an unconstrained soft substrate (several kPa) with uniform stiffness is unable to adhere to its substrate or to send out pseudopodia. When the substrate stiffness increases to tens of kPa (intermediate and rigid substrates), the cell can adequately adhere to its substrate. Subsequently, as the traction forces exerted by the cell increase, the cell elongates and its shape changes. Within very stiff (hard) substrates, the cell cannot penetrate into its substrate or send out pseudopodia. On the other hand, a cell is found to be more elongated within substrates with a constrained surface. However, this elongation decreases when the cell approaches it. It can be concluded that the higher the net traction force, the greater the cell elongation, the larger the cell membrane area, and the less random the cell alignment.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain. Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain. Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | |
Collapse
|
26
|
Mousavi SJ, Doblaré M, Doweidar MH. Computational modelling of multi-cell migration in a multi-signalling substrate. Phys Biol 2014; 11:026002. [PMID: 24632566 DOI: 10.1088/1478-3975/11/2/026002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell migration is a vital process in many biological phenomena ranging from wound healing to tissue regeneration. Over the past few years, it has been proven that in addition to cell-cell and cell-substrate mechanical interactions (mechanotaxis), cells can be driven by thermal, chemical and/or electrical stimuli. A numerical model was recently presented by the authors to analyse single cell migration in a multi-signalling substrate. That work is here extended to include multi-cell migration due to cell-cell interaction in a multi-signalling substrate under different conditions. This model is based on balancing the forces that act on the cell population in the presence of different guiding cues. Several numerical experiments are presented to illustrate the effect of different stimuli on the trajectory and final location of the cell population within a 3D heterogeneous multi-signalling substrate. Our findings indicate that although multi-cell migration is relatively similar to single cell migration in some aspects, the associated behaviour is very different. For instance, cell-cell interaction may delay single cell migration towards effective cues while increasing the magnitude of the average net cell traction force as well as the local velocity. Besides, the random movement of a cell within a cell population is slightly greater than that of single cell migration. Moreover, higher electrical field strength causes the cell slug to flatten near the cathode. On the other hand, as with single cell migration, the existence of electrotaxis dominates mechanotaxis, moving the cells to the cathode or anode pole located at the free surface. The numerical results here obtained are qualitatively consistent with related experimental works.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain. Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain. Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | | |
Collapse
|