1
|
Lofthouse EM, Cleal J, Lewis RM, Sengers BG. Computational Modelling of Paracellular Diffusion and OCT3 Mediated Transport of Metformin in the Perfused Human Placenta. J Pharm Sci 2023; 112:2570-2580. [PMID: 37211316 DOI: 10.1016/j.xphs.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Metformin is an antidiabetic drug, increasingly prescribed in pregnancy and has been shown to cross the human placenta. The mechanisms underlying placental metformin transfer remain unclear. This study investigated the roles of drug transporters and paracellular diffusion in the bidirectional transfer of metformin across the human placental syncytiotrophoblast using placental perfusion experiments and computational modelling. 14C-metformin transfer was observed in the maternal to fetal and fetal to maternal directions and was not competitively inhibited by 5 mM unlabelled metformin. Computational modelling of the data was consistent with overall placental transfer via paracellular diffusion. Interestingly, the model also predicted a transient peak in fetal 14C-metformin release due to trans-stimulation of OCT3 by unlabelled metformin at the basal membrane. To test this hypothesis a second experiment was designed. OCT3 substrates (5 mM metformin, 5 mM verapamil and 10 mM decynium-22) added to the fetal artery trans-stimulated release of 14C-metformin from the placenta into the fetal circulation, while 5 mM corticosterone did not. This study demonstrated activity of OCT3 transporters on the basal membrane of the human syncytiotrophoblast. However, we did not detect a contribution of either OCT3 or apical membrane transporters to overall materno-fetal transfer, which could be represented adequately by paracellular diffusion in our system.
Collapse
Affiliation(s)
- Emma M Lofthouse
- Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK
| | - Jane Cleal
- Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK
| | - Rohan M Lewis
- Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK
| | - Bram G Sengers
- Faculty of Engineering and Physical Sciences, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK.
| |
Collapse
|
2
|
Cleal JK, Poore KR, Lewis RM. The placental exposome, placental epigenetic adaptations and lifelong cardio-metabolic health. Mol Aspects Med 2022; 87:101095. [DOI: 10.1016/j.mam.2022.101095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 12/15/2022]
|
3
|
Mathematical model of the multi-amino acid multi-transporter system predicts uptake flux in CHO cells. J Biotechnol 2021; 344:40-49. [PMID: 34896439 DOI: 10.1016/j.jbiotec.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022]
Abstract
Supply and uptake of amino acids is of great importance to mammalian cell culture processes. Mammalian cells such as Chinese hamster ovary (CHO) cells express several amino acid (AA) transporters including uniporters and exchangers. Each transporter transports multiple AAs, making prediction of the effect of changed medium composition or transporter levels on individual AA transport rate challenging. A general kinetic model for such combinatorial amino acid transport, and a simplified analytical expression for the uptake rate as a function of amino acid concentrations and transporter levels is presented. From this general model, a CHO cell-specific AA transport model, to our knowledge the first such network model for any cell type, is constructed. The model is validated by its prediction of reported uptake flux and dependencies from experiments that were not used in model construction or parameter estimation. The model defines theoretical conditions for synergistic/repressive effect on the uptake rates of other AAs upon external addition of one AA. The ability of the CHO-specific model to predict amino acid interdependencies experimentally observed in other mammalian cell types suggests its robustness. This model will help formulate testable hypotheses of the effect of process changes on AA initial uptake, and serve as the AA transport component of kinetic models for cellular metabolism.
Collapse
|
4
|
Counter-directed leucine gradient promotes amino acid transfer across the human placenta. J Nutr Biochem 2021; 96:108760. [PMID: 33964466 DOI: 10.1016/j.jnutbio.2021.108760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 02/01/2023]
Abstract
The developing fetus is highly vulnerable to imbalances in the supply of essential amino acids (AA). Transplacental AA transfer depends on complex interactions between accumulative transporters, exchangers and facilitators, which maintain both intra-extracellular and materno-fetal substrate gradients. We determined physiological AA gradients between maternal and fetal blood and assessed their importance by studying maternal-fetal leucine transfer in human trophoblasts. Maternal-venous and corresponding fetal-arterial/fetal-venous sera were collected from 22 healthy patients at partum. The acquisition of the full AA spectra in serum was performed by ion exchange chromatography. Physiological materno-fetal AA levels were evaluated using paired two-way ANOVA with Tukey's correction. AA concentrations and gradients were tested for associations with anthropometric data by Spearman correlation analysis. Functional effects of a physiological leucine gradient versus equimolar concentrations were tested in BeWo cells using L-[3H]-leucine in conventional and Transwell-based uptake and transfer experiments. The LAT1/SLC7A5-specific inhibitor JPH203 was used to evaluate LAT1-transporter-mediated leucine transport. Maternal AA concentrations correlated with preconceptional and maternal weights at partum. Interestingly, low materno-fetal AA gradients were associated with maternal weight, BMI and gestational weight gain. Leucine uptake was promoted by increased extracellular substrate concentrations. Materno-fetal leucine transfer was significantly increased against a 137µM leucine gradient demonstrating that transplacental leucine transport is stimulated by a counter-directed gradient. Moreover, leucine transfer was inhibited by 10µM JPH203 confirming that Leu transport across the trophoblast monolayer is LAT1-dependent. This study demonstrates a currently underestimated effect of transplacental AA gradients on efficient leucine transfer which could severely affect fetal development.
Collapse
|
5
|
Advances in imaging feto-placental vasculature: new tools to elucidate the early life origins of health and disease. J Dev Orig Health Dis 2020; 12:168-178. [PMID: 32746961 DOI: 10.1017/s2040174420000720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Optimal placental function is critical for fetal development, and therefore a crucial consideration for understanding the developmental origins of health and disease (DOHaD). The structure of the fetal side of the placental vasculature is an important determinant of fetal growth and cardiovascular development. There are several imaging modalities for assessing feto-placental structure including stereology, electron microscopy, confocal microscopy, micro-computed tomography, light-sheet microscopy, ultrasonography and magnetic resonance imaging. In this review, we present current methodologies for imaging feto-placental vasculature morphology ex vivo and in vivo in human and experimental models, their advantages and limitations and how these provide insight into placental function and fetal outcomes. These imaging approaches add important perspective to our understanding of placental biology and have potential to be new tools to elucidate a deeper understanding of DOHaD.
Collapse
|
6
|
Overstall AM, Woods DC, Parker BM. Bayesian Optimal Design for Ordinary Differential Equation Models With Application in Biological Science. J Am Stat Assoc 2019. [DOI: 10.1080/01621459.2019.1617154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Antony M. Overstall
- Southampton Statistical Sciences Research Institute, University of Southampton, Southampton, UK
| | - David C. Woods
- Southampton Statistical Sciences Research Institute, University of Southampton, Southampton, UK
| | - Ben M. Parker
- School of Computing and Engineering, University of West London, London, UK
| |
Collapse
|
7
|
Jensen OE, Chernyavsky IL. Blood flow and transport in the human placenta. ANNUAL REVIEW OF FLUID MECHANICS 2019; 51:25-47. [PMID: 38410641 PMCID: PMC7615669 DOI: 10.1146/annurev-fluid-010518-040219] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The placenta is a multi-functional organ that exchanges blood gases and nutrients between a mother and her developing fetus. In humans, fetal blood flows through intricate networks of vessels confined within villous trees, the branches of which are bathed in pools of maternal blood. Fluid mechanics and transport processes play a central role in understanding how these elaborate structures contribute to the function of the placenta, and how their disorganization may lead to disease. Recent advances in imaging and computation have spurred significant advances in simulations of fetal and maternal flows within the placenta, across a range of lengthscales. Models describe jets of maternal blood emerging from spiral arteries into a disordered and deformable porous medium, and solute uptake by fetal blood flowing through elaborate three-dimensional capillary networks. We survey recent developments and emerging challenges in modeling flow and transport in this complex organ.
Collapse
Affiliation(s)
| | - Igor L. Chernyavsky
- School of Mathematics, University of Manchester, UK
- Maternal and Fetal Health Research Centre, Division of Developmental
Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine
& Health, University of Manchester, UK
| |
Collapse
|
8
|
Cleal JK, Lofthouse EM, Sengers BG, Lewis RM. A systems perspective on placental amino acid transport. J Physiol 2018; 596:5511-5522. [PMID: 29984402 PMCID: PMC6265537 DOI: 10.1113/jp274883] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022] Open
Abstract
Placental amino acid transfer is a complex process that is essential for fetal development. Impaired amino acid transfer causes fetal growth restriction, which may have lifelong health consequences. Transepithelial transfer of amino acids across the placental syncytiotrophoblast requires accumulative, exchange and facilitated transporters on the apical and basal membranes to work in concert. However, transporters alone do not determine amino acid transfer and factors that affect substrate availability, such as blood flow and metabolism, may also become rate-limiting for transfer. In order to determine the rate-limiting processes, it is necessary to take a systems approach which recognises the interdependence of these processes. New technologies have the potential to deliver targeted interventions to the placenta and help poorly growing fetuses. While many factors are necessary for amino acid transfer, novel therapies need to target the rate-limiting factors if they are going to be effective. This review will outline the factors which determine amino acid transfer and describe how they become interdependent. It will also highlight the role of computational modelling as a tool to understand this process.
Collapse
Affiliation(s)
- Jane K. Cleal
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Institute of Life SciencesUniversity of SouthamptonSouthamptonUK
| | - Emma M. Lofthouse
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Institute of Life SciencesUniversity of SouthamptonSouthamptonUK
| | - Bram G. Sengers
- Institute of Life SciencesUniversity of SouthamptonSouthamptonUK
- Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
| | - Rohan M. Lewis
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Institute of Life SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
9
|
Estrone sulphate uptake by the microvillous membrane of placental syncytiotrophoblast is coupled to glutamate efflux. Biochem Biophys Res Commun 2018; 506:237-242. [PMID: 30343886 PMCID: PMC6255796 DOI: 10.1016/j.bbrc.2018.10.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 01/19/2023]
Abstract
Organic anion transporters (OATs) and organic anion transporting polypeptides (OATPs) are transport proteins that mediate exchange of metabolites, hormones and waste products. Directional transport by these transporters can occur when exchange is coupled to the gradients of other substrates. This study investigates whether the activity of OATP4A1 and OATP2A1 on the maternal facing microvillus membrane of the placental syncytiotrophoblast is coupled to the glutamate gradient. OAT and OATP transporter proteins were over expressed in Xenopus oocytes to study their transport characteristics. Further transport studies were performed in term human placental villous fragments. Xenopus oocytes expressing OATP4A1 mediated glutamate uptake. No glutamate transport was observed in oocytes expressing OAT1, OAT3, OAT7 or OATP2A1. In oocytes expressing OATP4A1, uptake of estrone sulphate, thyroid hormones T3 and T4 and the bile acid taurocholate stimulated glutamate efflux. In term placental villous fragments addition of estrone sulphate and taurocholate trans-stimulated glutamate efflux. Coupling of OATP4A1 to the glutamate gradient may drive placental uptake of estrone-sulphate and thyroid hormone while also facilitating uptake of potentially harmful bile acids. In contrast, if OATP2A1 is not coupled to a similar gradient, it may function more effectively as an efflux transporter, potentially mediating efflux of prostaglandins to the mother. This study provides further evidence for glutamate as an important counter-ion driving transport into the placenta. OATP4A1 and OATP2A1 are present on the maternal facing surface of the placenta. OATP4A1, but not OATP2A1, activity was coupled to glutamate efflux. Placental estrone-sulphate and thyroid hormone uptake is coupled to glutamate efflux. Glutamate acts as a counter-ion for OATP4A1, driving transport into the placenta.
Collapse
|
10
|
Taslimifar M, Buoso S, Verrey F, Kurtcuoglu V. Functional Polarity of Microvascular Brain Endothelial Cells Supported by Neurovascular Unit Computational Model of Large Neutral Amino Acid Homeostasis. Front Physiol 2018; 9:171. [PMID: 29593549 PMCID: PMC5859092 DOI: 10.3389/fphys.2018.00171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
The homeostatic regulation of large neutral amino acid (LNAA) concentration in the brain interstitial fluid (ISF) is essential for proper brain function. LNAA passage into the brain is primarily mediated by the complex and dynamic interactions between various solute carrier (SLC) transporters expressed in the neurovascular unit (NVU), among which SLC7A5/LAT1 is considered to be the major contributor in microvascular brain endothelial cells (MBEC). The LAT1-mediated trans-endothelial transport of LNAAs, however, could not be characterized precisely by available in vitro and in vivo standard methods so far. To circumvent these limitations, we have incorporated published in vivo data of rat brain into a robust computational model of NVU-LNAA homeostasis, allowing us to evaluate hypotheses concerning LAT1-mediated trans-endothelial transport of LNAAs across the blood brain barrier (BBB). We show that accounting for functional polarity of MBECs with either asymmetric LAT1 distribution between membranes and/or intrinsic LAT1 asymmetry with low intraendothelial binding affinity is required to reproduce the experimentally measured brain ISF response to intraperitoneal (IP) L-tyrosine and L-phenylalanine injection. On the basis of these findings, we have also investigated the effect of IP administrated L-tyrosine and L-phenylalanine on the dynamics of LNAAs in MBECs, astrocytes and neurons. Finally, the computational model was shown to explain the trans-stimulation of LNAA uptake across the BBB observed upon ISF perfusion with a competitive LAT1 inhibitor.
Collapse
Affiliation(s)
- Mehdi Taslimifar
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Epithelial Transport Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Stefano Buoso
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Institute for Diagnostic and Interventional Radiology, Zurich University Hospital, Zurich, Switzerland
| | - Francois Verrey
- Epithelial Transport Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, Kidney.CH, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, Kidney.CH, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Stirrat LI, Sengers BG, Norman JE, Homer NZM, Andrew R, Lewis RM, Reynolds RM. Transfer and Metabolism of Cortisol by the Isolated Perfused Human Placenta. J Clin Endocrinol Metab 2018; 103:640-648. [PMID: 29161409 PMCID: PMC5800837 DOI: 10.1210/jc.2017-02140] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Abstract
CONTEXT Fetal overexposure to glucocorticoids in utero is associated with fetal growth restriction and is postulated to be a key mechanism linking suboptimal fetal growth with cardiovascular disease in later life. OBJECTIVE To develop a model to predict maternal-fetal glucocorticoid transfer. We hypothesized placental 11-β-hydroxysteroid dehydrogenase-type 2 (11β-HSD2) would be the major rate-limiting step in maternal cortisol transfer to the fetus. DESIGN We used a deuterated cortisol tracer in the ex vivo placental perfusion model, in combination with computational modeling, to investigate the role of interconversion of cortisol and its inactive metabolite cortisone on transfer of cortisol from mother to fetus. PARTICIPANTS Term placentas were collected from five women with uncomplicated pregnancies, at elective caesarean delivery. INTERVENTION Maternal artery of the isolated perfused placenta was perfused with D4-cortisol. MAIN OUTCOME MEASURES D4-cortisol, D3-cortisone, and D3-cortisol were measured in maternal and fetal venous outflows. RESULTS D4-cortisol, D3-cortisone, and D3-cortisol were detected and increased in maternal and fetal veins as the concentration of D4-cortisol perfusion increased. D3-cortisone synthesis was inhibited when 11-β-hydroxysteroid dehydrogenase (11β-HSD) activity was inhibited. At the highest inlet concentration, only 3.0% of the maternal cortisol was transferred to the fetal circulation, whereas 26.5% was metabolized and 70.5% exited via the maternal vein. Inhibiting 11β-HSD activity increased the transfer to the fetus to 7.3% of the maternal input, whereas 92.7% exited via the maternal vein. CONCLUSIONS Our findings challenge the concept that maternal cortisol diffuses freely across the placenta and confirm that 11β-HSD2 acts as a major "barrier" to cortisol transfer to the fetus.
Collapse
Affiliation(s)
- Laura I. Stirrat
- Tommy’s Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Bram G. Sengers
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jane E. Norman
- Tommy’s Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Natalie Z. M. Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh EH16 4TJ, Edinburgh, United Kingdom
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Ruth Andrew
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh EH16 4TJ, Edinburgh, United Kingdom
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Rohan M. Lewis
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Faculty of Medicine, University of Southampton, Southampton S016 6BD, United Kingdom
| | - Rebecca M. Reynolds
- Tommy’s Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
12
|
Perazzolo S, Lewis R, Sengers B. Modelling the effect of intervillous flow on solute transfer based on 3D imaging of the human placental microstructure. Placenta 2017; 60:21-27. [DOI: 10.1016/j.placenta.2017.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/29/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023]
|
13
|
Perazzolo S, Hirschmugl B, Wadsack C, Desoye G, Lewis RM, Sengers BG. The influence of placental metabolism on fatty acid transfer to the fetus. J Lipid Res 2017; 58:443-454. [PMID: 27913585 PMCID: PMC5282960 DOI: 10.1194/jlr.p072355] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
The factors determining fatty acid transfer across the placenta are not fully understood. This study used a combined experimental and computational modeling approach to explore placental transfer of nonesterified fatty acids and identify the rate-determining processes. Isolated perfused human placenta was used to study the uptake and transfer of 13C-fatty acids and the release of endogenous fatty acids. Only 6.2 ± 0.8% of the maternal 13C-fatty acids taken up by the placenta was delivered to the fetal circulation. Of the unlabeled fatty acids released from endogenous lipid pools, 78 ± 5% was recovered in the maternal circulation and 22 ± 5% in the fetal circulation. Computational modeling indicated that fatty acid metabolism was necessary to explain the discrepancy between uptake and delivery of 13C-fatty acids. Without metabolism, the model overpredicts the fetal delivery of 13C-fatty acids 15-fold. Metabolic rate was predicted to be the main determinant of uptake from the maternal circulation. The microvillous membrane had a greater fatty acid transport capacity than the basal membrane. This study suggests that incorporation of fatty acids into placental lipid pools may modulate their transfer to the fetus. Future work needs to focus on the factors regulating fatty acid incorporation into lipid pools.
Collapse
Affiliation(s)
- Simone Perazzolo
- Faculty of Engineering and Environment, University of Southampton, SO17 1BJ, UK
- Institute for Life Sciences Southampton, University of Southampton, SO17 1BJ, UK
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Rohan M Lewis
- Institute for Life Sciences Southampton, University of Southampton, SO17 1BJ, UK
- Bioengineering Research Group, Faculty of Medicine, University of Southampton, SO17 1BJ, UK
| | - Bram G Sengers
- Faculty of Engineering and Environment, University of Southampton, SO17 1BJ, UK
- Institute for Life Sciences Southampton, University of Southampton, SO17 1BJ, UK
| |
Collapse
|
14
|
Huckle WR. Cell- and Tissue-Based Models for Study of Placental Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:29-37. [PMID: 28110753 DOI: 10.1016/bs.pmbts.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decades of research into the molecular mechanisms by which the placenta forms and functions have sought to improve prevention, diagnosis, and management of disorders of this vital tissue. This research has included development of experimental models intended to replicate behavior of the native placenta in both health and disease. Animal models devised in rodents, sheep, cattle, or other domestic animal species have the advantage of being biologically "complete," but all differ to some degree in developmental timing and anatomical details compared to the human, suggesting subtle differences in molecular mechanism. Consequently, investigators have resorted to simplified systems, characterizing the mechanisms of placental development by using explants of maternal and fetal tissue, primary cell cultures, and immortalized or choriocarcinoma-derived cell lines. Such studies have advanced our understanding of mechanisms by which trophoblasts and associated tissues invade the endometrium, produce chorionic gonadotropin, manage immune tolerance of the fetus, or elaborate proteins that may contribute to placental dysfunction. More recently, use of three-dimensional spheroid cultures, computational modeling of placental tissue dynamics and blood flow, and bioengineering of tissue constructs have been undertaken, aimed to recapitulate the types of interactions that occur among diverse uterine and placental cell types in utero. New technologies and biological paradigms, stemming in part from the ongoing Human Placenta Project, promise to expand the array of available tools, increasing the likelihood that the years ahead will see significant improvements in the ability to prevent, diagnose, and treat life-threatening disorders of placental formation and function.
Collapse
Affiliation(s)
- W R Huckle
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA, United States.
| |
Collapse
|
15
|
Vaughan O, Rosario F, Powell T, Jansson T. Regulation of Placental Amino Acid Transport and Fetal Growth. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:217-251. [DOI: 10.1016/bs.pmbts.2016.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Brownbill P, Chernyavsky I, Bottalico B, Desoye G, Hansson S, Kenna G, Knudsen LE, Markert UR, Powles-Glover N, Schneider H, Leach L. An international network (PlaNet) to evaluate a human placental testing platform for chemicals safety testing in pregnancy. Reprod Toxicol 2016; 64:191-202. [PMID: 27327413 DOI: 10.1016/j.reprotox.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/23/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022]
Abstract
The human placenta is a critical life-support system that nourishes and protects a rapidly growing fetus; a unique organ, species specific in structure and function. We consider the pressing challenge of providing additional advice on the safety of prescription medicines and environmental exposures in pregnancy and how ex vivo and in vitro human placental models might be advanced to reproducible human placental test systems (HPTSs), refining a weight of evidence to the guidance given around compound risk assessment during pregnancy. The placental pharmacokinetics of xenobiotic transfer, dysregulated placental function in pregnancy-related pathologies and influx/efflux transporter polymorphisms are a few caveats that could be addressed by HPTSs, not the specific focus of current mammalian reproductive toxicology systems. An international consortium, "PlaNet", will bridge academia, industry and regulators to consider screen ability and standardisation issues surrounding these models, with proven reproducibility for introduction into industrial and clinical practice.
Collapse
Affiliation(s)
- Paul Brownbill
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Igor Chernyavsky
- School of Mathematics, University of Manchester, Manchester, UK.
| | - Barbara Bottalico
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Lund University, Lund, Sweden,.
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.
| | - Stefan Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Lund University, Lund, Sweden,.
| | | | - Lisbeth E Knudsen
- Department of Public Health, Faculty Of Health Sciences, University of Copenhagen, Denmark.
| | - Udo R Markert
- Placenta-Labor Laboratory, Department of Obstetrics, Friedrich Schiller University, D-07740, Jena, Germany.
| | - Nicola Powles-Glover
- Reproductive, Development and Paediatric Centre of Excellence, AstraZeneca, Mereside, Alderley Park, Alderley Edge SK10 4TG, UK.
| | - Henning Schneider
- Department of Obstetrics and Gynecology, Inselspital, University of Bern, Switzerland.
| | - Lopa Leach
- Molecular Cell Biology & Development, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, UK.
| |
Collapse
|
17
|
Panitchob N, Widdows KL, Crocker IP, Johnstone ED, Please CP, Sibley CP, Glazier JD, Lewis RM, Sengers BG. Computational modelling of placental amino acid transfer as an integrated system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1451-61. [PMID: 27045077 PMCID: PMC4884669 DOI: 10.1016/j.bbamem.2016.03.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 01/31/2023]
Abstract
Placental amino acid transfer is essential for fetal development and its impairment is associated with poor fetal growth. Amino acid transfer is mediated by a broad array of specific plasma membrane transporters with overlapping substrate specificity. However, it is not fully understood how these different transporters work together to mediate net flux across the placenta. Therefore the aim of this study was to develop a new computational model to describe how human placental amino acid transfer functions as an integrated system. Amino acid transfer from mother to fetus requires transport across the two plasma membranes of the placental syncytiotrophoblast, each of which contains a distinct complement of transporter proteins. A compartmental modelling approach was combined with a carrier based modelling framework to represent the kinetics of the individual accumulative, exchange and facilitative classes of transporters on each plasma membrane. The model successfully captured the principal features of transplacental transfer. Modelling results clearly demonstrate how modulating transporter activity and conditions such as phenylketonuria, can increase the transfer of certain groups of amino acids, but that this comes at the cost of decreasing the transfer of others, which has implications for developing clinical treatment options in the placenta and other transporting epithelia. First computational model of placental amino acid transfer as an integrated system Increased activity of a transporter does not mean increased transfer to the fetus. Increasing transfer of certain amino acids can reduce the transfer of others. Amino acid composition as well as concentration determines transfer to the fetus. Modelling of phenylketonuria suggests inhibition by excess maternal phenylalanine.
Collapse
Affiliation(s)
- N Panitchob
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, UK
| | - K L Widdows
- Maternal & Fetal Health Research Centre, Institute of Human Development, University of Manchester, UK; St. Mary's Hospital & Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - I P Crocker
- Maternal & Fetal Health Research Centre, Institute of Human Development, University of Manchester, UK; St. Mary's Hospital & Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - E D Johnstone
- Maternal & Fetal Health Research Centre, Institute of Human Development, University of Manchester, UK; St. Mary's Hospital & Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - C P Please
- Mathematical Institute, Oxford University, Oxford, UK
| | - C P Sibley
- Maternal & Fetal Health Research Centre, Institute of Human Development, University of Manchester, UK; St. Mary's Hospital & Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - J D Glazier
- Maternal & Fetal Health Research Centre, Institute of Human Development, University of Manchester, UK; St. Mary's Hospital & Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - R M Lewis
- Faculty of Medicine, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK
| | - B G Sengers
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, UK; Institute for Life Sciences, University of Southampton, UK.
| |
Collapse
|
18
|
Lofthouse EM, Perazzolo S, Brooks S, Crocker IP, Glazier JD, Johnstone ED, Panitchob N, Sibley CP, Widdows KL, Sengers BG, Lewis RM. Phenylalanine transfer across the isolated perfused human placenta: an experimental and modeling investigation. Am J Physiol Regul Integr Comp Physiol 2015; 310:R828-36. [PMID: 26676251 PMCID: PMC5000773 DOI: 10.1152/ajpregu.00405.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/13/2015] [Indexed: 12/15/2022]
Abstract
Membrane transporters are considered essential for placental amino acid transfer, but the contribution of other factors, such as blood flow and metabolism, is poorly defined. In this study we combine experimental and modeling approaches to understand the determinants of [(14)C]phenylalanine transfer across the isolated perfused human placenta. Transfer of [(14)C]phenylalanine across the isolated perfused human placenta was determined at different maternal and fetal flow rates. Maternal flow rate was set at 10, 14, and 18 ml/min for 1 h each. At each maternal flow rate, fetal flow rates were set at 3, 6, and 9 ml/min for 20 min each. Appearance of [(14)C]phenylalanine was measured in the maternal and fetal venous exudates. Computational modeling of phenylalanine transfer was undertaken to allow comparison of the experimental data with predicted phenylalanine uptake and transfer under different initial assumptions. Placental uptake (mol/min) of [(14)C]phenylalanine increased with maternal, but not fetal, flow. Delivery (mol/min) of [(14)C]phenylalanine to the fetal circulation was not associated with fetal or maternal flow. The absence of a relationship between placental phenylalanine uptake and net flux of phenylalanine to the fetal circulation suggests that factors other than flow or transporter-mediated uptake are important determinants of phenylalanine transfer. These observations could be explained by tight regulation of free amino acid levels within the placenta or properties of the facilitated transporters mediating phenylalanine transport. We suggest that amino acid metabolism, primarily incorporation into protein, is controlling free amino acid levels and, thus, placental transfer.
Collapse
Affiliation(s)
- E M Lofthouse
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - S Perazzolo
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - S Brooks
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - I P Crocker
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, and St. Mary's Hospital and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; and
| | - J D Glazier
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, and St. Mary's Hospital and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; and
| | - E D Johnstone
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, and St. Mary's Hospital and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; and
| | - N Panitchob
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - C P Sibley
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, and St. Mary's Hospital and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; and
| | - K L Widdows
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, and St. Mary's Hospital and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; and
| | - B G Sengers
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - R M Lewis
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
19
|
Serov AS, Salafia C, Grebenkov DS, Filoche M. The role of morphology in mathematical models of placental gas exchange. J Appl Physiol (1985) 2015; 120:17-28. [PMID: 26494446 DOI: 10.1152/japplphysiol.00543.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
The performance of the placenta as a gas exchanger has a direct impact on the future health of the newborn. To provide accurate estimates of respiratory gas exchange rates, placenta models need to account for both the physiology of exchange and the organ morphology. While the former has been extensively studied, accounting for the latter is still a challenge. The geometrical complexity of placental structure requires use of carefully crafted approximations. We present here the state of the art of respiratory gas exchange placenta modeling and demonstrate the influence of the morphology description on model predictions. Advantages and shortcomings of various classes of models are discussed, and experimental techniques that may be used for model validation are summarized. Several directions for future development are suggested.
Collapse
Affiliation(s)
- A S Serov
- Physique de la Matière Condensée, Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France; and
| | - C Salafia
- Placental Analytics, LLC, Larchmont, New York
| | - D S Grebenkov
- Physique de la Matière Condensée, Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France; and
| | - M Filoche
- Physique de la Matière Condensée, Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France; and
| |
Collapse
|
20
|
Lofthouse EM, Brooks S, Cleal JK, Hanson MA, Poore KR, O'Kelly IM, Lewis RM. Glutamate cycling may drive organic anion transport on the basal membrane of human placental syncytiotrophoblast. J Physiol 2015; 593:4549-59. [PMID: 26277985 PMCID: PMC4606536 DOI: 10.1113/jp270743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/04/2015] [Indexed: 12/28/2022] Open
Abstract
Key points The placenta removes waste products, drugs and environmental toxins from the fetal circulation and two of the transport proteins responsible for this are OAT4 and OATP2B1 localised to the basal membrane of placental syncytiotrophoblast. We provide evidence that OAT4 and OATP2B1 mediate glutamate efflux when expressed in Xenopus oocytes and that in the perfused placenta, bromosulphothalein (an OAT4 and OATP2B1 substrate) stimulates glutamate efflux. Furthermore the efflux of glutamate can only be seen in the presence of aspartate, which will block glutamate reuptake by the placenta, consistent with cycling of glutamate across the basal membrane. We propose that glutamate efflux down its transmembrane gradient drives placental uptake via OAT4 and OATP2B1 from the fetal circulation and that reuptake of glutamate maintains this driving gradient.
Abstract The organic anion transporter OAT4 (SLC22A11) and organic anion transporting polypeptide OATP2B1 (SLCO2B1) are expressed in the basal membrane of the placental syncytiotrophoblast. These transporters mediate exchange whereby uptake of one organic anion is coupled to efflux of a counter‐ion. In placenta, these exchangers mediate placental uptake of substrates for oestrogen synthesis as well as clearing waste products and xenobiotics from the fetal circulation. However, the identity of the counter‐ion driving this transport in the placenta, and in other tissues, is unclear. While glutamate is not a known OAT4 or OATP2B1 substrate, we propose that its high intracellular concentration has the potential to drive accumulation of substrates from the fetal circulation. In the isolated perfused placenta, glutamate exchange was observed between the placenta and the fetal circulation. This exchange could not be explained by known glutamate exchangers. However, glutamate efflux was trans‐stimulated by an OAT4 and OATP2B1 substrate (bromosulphothalein). Exchange of glutamate for bromosulphothalein was only observed when glutamate reuptake was inhibited (by addition of aspartate). To determine if OAT4 and/or OATP2B1 mediate glutamate exchange, uptake and efflux of glutamate were investigated in Xenopus laevis oocytes. Our data demonstrate that in Xenopus oocytes expressing either OAT4 or OATP2B1 efflux of intracellular [14C]glutamate could be stimulated by conditions including extracellular glutamate (OAT4), estrone‐sulphate and bromosulphothalein (both OAT4 and OATP2B1) or pravastatin (OATP2B1). Cycling of glutamate across the placenta involving efflux via OAT4 and OATP2B1 and subsequent reuptake will drive placental uptake of organic anions from the fetal circulation.
Collapse
Affiliation(s)
- Emma M Lofthouse
- University of Southampton, Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, UK
| | - Suzanne Brooks
- University of Southampton, Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, UK
| | - Jane K Cleal
- University of Southampton, Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, UK
| | - Mark A Hanson
- University of Southampton, Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, UK
| | - Kirsten R Poore
- University of Southampton, Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, UK
| | - Ita M O'Kelly
- University of Southampton, Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, UK
| | - Rohan M Lewis
- University of Southampton, Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, UK
| |
Collapse
|
21
|
Gaccioli F, Aye ILMH, Roos S, Lager S, Ramirez VI, Kanai Y, Powell TL, Jansson T. Expression and functional characterisation of System L amino acid transporters in the human term placenta. Reprod Biol Endocrinol 2015; 13:57. [PMID: 26050671 PMCID: PMC4462079 DOI: 10.1186/s12958-015-0054-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 05/28/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND System L transporters LAT1 (SLC7A5) and LAT2 (SLC7A8) mediate the uptake of large, neutral amino acids in the human placenta. Many System L substrates are essential amino acids, thus representing crucial nutrients for the growing fetus. Both LAT isoforms are expressed in the human placenta, but the relative contribution of LAT1 and LAT2 to placental System L transport and their subcellular localisation are not well established. Moreover, the influence of maternal body mass index (BMI) on placental System L amino acid transport is poorly understood. Therefore the aims of this study were to determine: i) the relative contribution of the LAT isoforms to System L transport activity in primary human trophoblast (PHT) cells isolated from term placenta; ii) the subcellular localisation of LAT transporters in human placenta; and iii) placental expression and activity of System L transporters in response to maternal overweight/obesity. METHODS System L mediated leucine uptake was measured in PHT cells after treatment with si-RNA targeting LAT1 and/or LAT2. The localisation of LAT isoforms was studied in isolated microvillous plasma membranes (MVM) and basal membranes (BM) by Western blot analysis. Results were confirmed by immunohistochemistry in sections of human term placenta. Expression and activity System L transporters was measured in isolated MVM from women with varying pre-pregnancy BMI. RESULTS Both LAT1 and LAT2 isoforms contribute to System L transport activity in primary trophoblast cells from human term placenta. LAT1 and LAT2 transporters are highly expressed in the MVM of the syncytiotrophoblast layer at term. LAT2 is also localised in the basal membrane and in endothelial cells lining the fetal capillaries. Measurements in isolated MVM vesicles indicate that System L transporter expression and activity is not influenced by maternal BMI. CONCLUSIONS LAT1 and LAT2 are present and functional in the syncytiotrophoblast MVM, whereas LAT2 is also expressed in the BM and in the fetal capillary endothelium. In contrast to placental System A and beta amino acid transporters, MVM System L activity is unaffected by maternal overweight/obesity.
Collapse
Affiliation(s)
- Francesca Gaccioli
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK.
| | - Irving L M H Aye
- Division of Basic Reproductive Sciences, Department of Obstetrics and Gynaecology, University of Colorado Denver Anschutz Medical Campus, Aurora, Denver, CO, USA.
| | - Sara Roos
- Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Susanne Lager
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK.
| | - Vanessa I Ramirez
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Yoshikatsu Kanai
- Division of Bio-System Pharmacology, Department of Pharmacology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Theresa L Powell
- Section of Neonatology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Denver, CO, USA.
| | - Thomas Jansson
- Division of Basic Reproductive Sciences, Department of Obstetrics and Gynaecology, University of Colorado Denver Anschutz Medical Campus, Aurora, Denver, CO, USA.
| |
Collapse
|
22
|
Widdows KL, Panitchob N, Crocker IP, Please CP, Hanson MA, Sibley CP, Johnstone ED, Sengers BG, Lewis RM, Glazier JD. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. FASEB J 2015; 29:2583-94. [PMID: 25761365 PMCID: PMC4469330 DOI: 10.1096/fj.14-267773] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/18/2015] [Indexed: 01/25/2023]
Abstract
Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms.
Collapse
Affiliation(s)
- Kate L Widdows
- *Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, United Kingdom; St. Mary's Hospital and Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom; Mathematical Institute, Oxford University, Oxford, United Kingdom; and Faculty of Medicine, and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Nuttanont Panitchob
- *Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, United Kingdom; St. Mary's Hospital and Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom; Mathematical Institute, Oxford University, Oxford, United Kingdom; and Faculty of Medicine, and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ian P Crocker
- *Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, United Kingdom; St. Mary's Hospital and Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom; Mathematical Institute, Oxford University, Oxford, United Kingdom; and Faculty of Medicine, and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Colin P Please
- *Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, United Kingdom; St. Mary's Hospital and Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom; Mathematical Institute, Oxford University, Oxford, United Kingdom; and Faculty of Medicine, and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Mark A Hanson
- *Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, United Kingdom; St. Mary's Hospital and Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom; Mathematical Institute, Oxford University, Oxford, United Kingdom; and Faculty of Medicine, and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Colin P Sibley
- *Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, United Kingdom; St. Mary's Hospital and Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom; Mathematical Institute, Oxford University, Oxford, United Kingdom; and Faculty of Medicine, and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Edward D Johnstone
- *Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, United Kingdom; St. Mary's Hospital and Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom; Mathematical Institute, Oxford University, Oxford, United Kingdom; and Faculty of Medicine, and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Bram G Sengers
- *Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, United Kingdom; St. Mary's Hospital and Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom; Mathematical Institute, Oxford University, Oxford, United Kingdom; and Faculty of Medicine, and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Rohan M Lewis
- *Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, United Kingdom; St. Mary's Hospital and Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom; Mathematical Institute, Oxford University, Oxford, United Kingdom; and Faculty of Medicine, and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Jocelyn D Glazier
- *Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester, United Kingdom; St. Mary's Hospital and Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom; Mathematical Institute, Oxford University, Oxford, United Kingdom; and Faculty of Medicine, and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
23
|
Staud F, Ceckova M. Regulation of drug transporter expression and function in the placenta. Expert Opin Drug Metab Toxicol 2015; 11:533-55. [DOI: 10.1517/17425255.2015.1005073] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|