Wendt S, Kleinhoelting N, Czaczkes TJ. Negative feedback: ants choose unoccupied over occupied food sources and lay more pheromone to them.
J R Soc Interface 2020;
17:20190661. [PMID:
32093538 DOI:
10.1098/rsif.2019.0661]
[Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In order to make effective collective decisions, ants lay pheromone trails to lead nest-mates to acceptable food sources. The strength of a trail informs other ants about the quality of a food source, allowing colonies to exploit the most profitable resources. However, recruiting too many ants to a single food source can lead to over-exploitation, queuing, and thus decreased food intake for the colony. The nonlinear nature of pheromonal recruitment can also lead colonies to become trapped in suboptimal decisions, if the environment changes. Negative feedback systems can ameliorate these problems. We investigated a potential source of negative feedback: whether the presence of nest-mates makes food sources more or less attractive. Lasius niger workers were trained to food sources of identical quality, scented with different odours. Ants fed alone at one odour. At the other odour ants fed either with other feeding nest-mates, or with dummy ants (black surface lipid-coated glass beads). Ants tended to avoid food sources at which other nest-mates were present. They also deposited less pheromone to occupied food sources, suggesting an active avoidance behaviour, and potentiating negative feedback. This effect may prevent crowding at a single food source when other profitable food sources are available elsewhere, leading to a higher collective food intake. It could also potentially protect colonies from becoming trapped in local feeding optima. However, ants did not avoid the food associated with dummy ants, suggesting that surface lipids and static visual cues alone may not be sufficient for nest-mate recognition in this context.
Collapse