1
|
Schoenmakers LLJ, Reydon TAC, Kirschning A. Evolution at the Origins of Life? Life (Basel) 2024; 14:175. [PMID: 38398684 PMCID: PMC10890241 DOI: 10.3390/life14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The role of evolutionary theory at the origin of life is an extensively debated topic. The origin and early development of life is usually separated into a prebiotic phase and a protocellular phase, ultimately leading to the Last Universal Common Ancestor. Most likely, the Last Universal Common Ancestor was subject to Darwinian evolution, but the question remains to what extent Darwinian evolution applies to the prebiotic and protocellular phases. In this review, we reflect on the current status of evolutionary theory in origins of life research by bringing together philosophy of science, evolutionary biology, and empirical research in the origins field. We explore the various ways in which evolutionary theory has been extended beyond biology; we look at how these extensions apply to the prebiotic development of (proto)metabolism; and we investigate how the terminology from evolutionary theory is currently being employed in state-of-the-art origins of life research. In doing so, we identify some of the current obstacles to an evolutionary account of the origins of life, as well as open up new avenues of research.
Collapse
Affiliation(s)
- Ludo L. J. Schoenmakers
- Konrad Lorenz Institute for Evolution and Cognition Research (KLI), 3400 Klosterneuburg, Austria
| | - Thomas A. C. Reydon
- Institute of Philosophy, Centre for Ethics and Law in the Life Sciences (CELLS), Leibniz University Hannover, 30159 Hannover, Germany;
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany;
| |
Collapse
|
2
|
Pross A, Pascal R. On the Emergence of Autonomous Chemical Systems through Dissipation Kinetics. Life (Basel) 2023; 13:2171. [PMID: 38004311 PMCID: PMC10672272 DOI: 10.3390/life13112171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
This work addresses the kinetic requirements for compensating the entropic cost of self-organization and natural selection, thereby revealing a fundamental principle in biology. Metabolic and evolutionary features of life cannot therefore be separated from an origin of life perspective. Growth, self-organization, evolution and dissipation processes need to be metabolically coupled and fueled by low-entropy energy harvested from the environment. The evolutionary process requires a reproduction cycle involving out-of-equilibrium intermediates and kinetic barriers that prevent the reproductive cycle from proceeding in reverse. Model analysis leads to the unexpectedly simple relationship that the system should be fed energy with a potential exceeding a value related to the ratio of the generation time to the transition state lifetime, thereby enabling a process mimicking natural selection to take place. Reproducing life's main features, in particular its Darwinian behavior, therefore requires satisfying constraints that relate to time and energy. Irreversible reaction cycles made only of unstable entities reproduce some of these essential features, thereby offering a physical/chemical basis for the possible emergence of autonomy. Such Emerging Autonomous Systems (EASs) are found to be capable of maintaining and reproducing their kind through the transmission of a stable kinetic state, thereby offering a physical/chemical basis for what could be deemed an epigenetic process.
Collapse
Affiliation(s)
- Addy Pross
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel;
| | - Robert Pascal
- PIIM, Institut Origines, Aix-Marseille Université—CNRS, Service 232, Saint Jérôme, Ave Escadrille Normandie Niemen, 13013 Marseille, France
| |
Collapse
|
3
|
Santos TCB, Futerman AH. The fats of the matter: Lipids in prebiotic chemistry and in origin of life studies. Prog Lipid Res 2023; 92:101253. [PMID: 37659458 DOI: 10.1016/j.plipres.2023.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The unique biophysical and biochemical properties of lipids render them crucial in most models of the origin of life (OoL). Many studies have attempted to delineate the prebiotic pathways by which lipids were formed, how micelles and vesicles were generated, and how these micelles and vesicles became selectively permeable towards the chemical precursors required to initiate and support biochemistry and inheritance. Our analysis of a number of such studies highlights the extremely narrow and limited range of conditions by which an experiment is considered to have successfully modeled a role for lipids in an OoL experiment. This is in line with a recent proposal that bias is introduced into OoL studies by the extent and the kind of human intervention. It is self-evident that OoL studies can only be performed by human intervention, and we now discuss the possibility that some assumptions and simplifications inherent in such experimental approaches do not permit determination of mechanistic insight into the roles of lipids in the OoL. With these limitations in mind, we suggest that more nuanced experimental approaches than those currently pursued may be required to elucidate the generation and function of lipids, micelles and vesicles in the OoL.
Collapse
Affiliation(s)
- Tania C B Santos
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Baum DA, Peng Z, Dolson E, Smith E, Plum AM, Gagrani P. The ecology-evolution continuum and the origin of life. J R Soc Interface 2023; 20:20230346. [PMID: 37907091 PMCID: PMC10618062 DOI: 10.1098/rsif.2023.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Prior research on evolutionary mechanisms during the origin of life has mainly assumed the existence of populations of discrete entities with information encoded in genetic polymers. Recent theoretical advances in autocatalytic chemical ecology establish a broader evolutionary framework that allows for adaptive complexification prior to the emergence of bounded individuals or genetic encoding. This framework establishes the formal equivalence of cells, ecosystems and certain localized chemical reaction systems as autocatalytic chemical ecosystems (ACEs): food-driven (open) systems that can grow due to the action of autocatalytic cycles (ACs). When ACEs are organized in meta-ecosystems, whether they be populations of cells or sets of chemically similar environmental patches, evolution, defined as change in AC frequency over time, can occur. In cases where ACs are enriched because they enhance ACE persistence or dispersal ability, evolution is adaptive and can build complexity. In particular, adaptive evolution can explain the emergence of self-bounded units (e.g. protocells) and genetic inheritance mechanisms. Recognizing the continuity between ecological and evolutionary change through the lens of autocatalytic chemical ecology suggests that the origin of life should be seen as a general and predictable outcome of driven chemical ecosystems rather than a phenomenon requiring specific, rare conditions.
Collapse
Affiliation(s)
- David A. Baum
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53705, USA
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Zhen Peng
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
- Department of Geoscience, University of Wisconsin, Madison, WI 53706, USA
| | - Emily Dolson
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Eric Smith
- Department of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Alex M. Plum
- Department of Physics, University of California, San Diego, CA 92093, USA
| | - Praful Gagrani
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
5
|
Ameta S, Matsubara YJ, Chakraborty N, Krishna S, Thutupalli S. Self-Reproduction and Darwinian Evolution in Autocatalytic Chemical Reaction Systems. Life (Basel) 2021; 11:308. [PMID: 33916135 PMCID: PMC8066523 DOI: 10.3390/life11040308] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding the emergence of life from (primitive) abiotic components has arguably been one of the deepest and yet one of the most elusive scientific questions. Notwithstanding the lack of a clear definition for a living system, it is widely argued that heredity (involving self-reproduction) along with compartmentalization and metabolism are key features that contrast living systems from their non-living counterparts. A minimal living system may be viewed as "a self-sustaining chemical system capable of Darwinian evolution". It has been proposed that autocatalytic sets of chemical reactions (ACSs) could serve as a mechanism to establish chemical compositional identity, heritable self-reproduction, and evolution in a minimal chemical system. Following years of theoretical work, autocatalytic chemical systems have been constructed experimentally using a wide variety of substrates, and most studies, thus far, have focused on the demonstration of chemical self-reproduction under specific conditions. While several recent experimental studies have raised the possibility of carrying out some aspects of experimental evolution using autocatalytic reaction networks, there remain many open challenges. In this review, we start by evaluating theoretical studies of ACSs specifically with a view to establish the conditions required for such chemical systems to exhibit self-reproduction and Darwinian evolution. Then, we follow with an extensive overview of experimental ACS systems and use the theoretically established conditions to critically evaluate these empirical systems for their potential to exhibit Darwinian evolution. We identify various technical and conceptual challenges limiting experimental progress and, finally, conclude with some remarks about open questions.
Collapse
Affiliation(s)
- Sandeep Ameta
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Yoshiya J. Matsubara
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Nayan Chakraborty
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
| |
Collapse
|
6
|
Scossa F, Fernie AR. The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Comput Struct Biotechnol J 2020; 18:482-500. [PMID: 32180906 PMCID: PMC7063335 DOI: 10.1016/j.csbj.2020.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/21/2023] Open
Abstract
The origin of primordial metabolism and its expansion to form the metabolic networks extant today represent excellent systems to study the impact of natural selection and the potential adaptive role of novel compounds. Here we present the current hypotheses made on the origin of life and ancestral metabolism and present the theories and mechanisms by which the large chemical diversity of plants might have emerged along evolution. In particular, we provide a survey of statistical methods that can be used to detect signatures of selection at the gene and population level, and discuss potential and limits of these methods for investigating patterns of molecular adaptation in plant metabolism.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178 Rome, Italy
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| |
Collapse
|
7
|
Czégel D, Zachar I, Szathmáry E. Multilevel selection as Bayesian inference, major transitions in individuality as structure learning. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190202. [PMID: 31598234 PMCID: PMC6731722 DOI: 10.1098/rsos.190202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Complexity of life forms on the Earth has increased tremendously, primarily driven by subsequent evolutionary transitions in individuality, a mechanism in which units formerly being capable of independent replication combine to form higher-level evolutionary units. Although this process has been likened to the recursive combination of pre-adapted sub-solutions in the framework of learning theory, no general mathematical formalization of this analogy has been provided yet. Here we show, building on former results connecting replicator dynamics and Bayesian update, that (i) evolution of a hierarchical population under multilevel selection is equivalent to Bayesian inference in hierarchical Bayesian models and (ii) evolutionary transitions in individuality, driven by synergistic fitness interactions, is equivalent to learning the structure of hierarchical models via Bayesian model comparison. These correspondences support a learning theory-oriented narrative of evolutionary complexification: the complexity and depth of the hierarchical structure of individuality mirror the amount and complexity of data that have been integrated about the environment through the course of evolutionary history.
Collapse
Affiliation(s)
- Dániel Czégel
- MTA Centre for Ecological Research, Evolutionary Systems Research Group, Hungarian Academy of Sciences, 8237 Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, 1117 Budapest, Hungary
- Parmenides Foundation, Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - István Zachar
- MTA Centre for Ecological Research, Evolutionary Systems Research Group, Hungarian Academy of Sciences, 8237 Tihany, Hungary
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Eötvös University, 1117 Budapest, Hungary
- Parmenides Foundation, Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany
| | - Eörs Szathmáry
- MTA Centre for Ecological Research, Evolutionary Systems Research Group, Hungarian Academy of Sciences, 8237 Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, 1117 Budapest, Hungary
- Parmenides Foundation, Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany
| |
Collapse
|
8
|
Kulkarni P, Uversky VN. Intrinsically Disordered Proteins: The Dark Horse of the Dark Proteome. Proteomics 2018; 18:e1800061. [DOI: 10.1002/pmic.201800061] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/07/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research; City of Hope National Medical Center; Duarte CA 91010 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa FL 33612 USA
- Laboratory of New methods in Biology; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino Moscow Region 142290 Russia
| |
Collapse
|
9
|
Liu Y, Sumpter DJT. Mathematical modeling reveals spontaneous emergence of self-replication in chemical reaction systems. J Biol Chem 2018; 293:18854-18863. [PMID: 30282809 PMCID: PMC6295724 DOI: 10.1074/jbc.ra118.003795] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/29/2018] [Indexed: 01/20/2023] Open
Abstract
Explaining the origin of life requires us to elucidate how self-replication arises. To be specific, how can a self-replicating entity develop spontaneously from a chemical reaction system in which no reaction is self-replicating? Previously proposed mathematical models either supply an explicit framework for a minimal living system or consider only catalyzed reactions, and thus fail to provide a comprehensive theory. Here, we set up a general mathematical model for chemical reaction systems that properly accounts for energetics, kinetics, and the conservation law. We found that 1) some systems are collectively catalytic, a mode whereby reactants are transformed into end products with the assistance of intermediates (as in the citric acid cycle), whereas some others are self-replicating, that is, different parts replicate each other and the system self-replicates as a whole (as in the formose reaction, in which sugar is replicated from formaldehyde); 2) side reactions do not always inhibit such systems; 3) randomly chosen chemical universes (namely random artificial chemistries) often contain one or more such systems; 4) it is possible to construct a self-replicating system in which the entropy of some parts spontaneously decreases, in a manner similar to that discussed by Schrödinger; and 5) complex self-replicating molecules can emerge spontaneously and relatively easily from simple chemical reaction systems through a sequence of transitions. Together, these results start to explain the origins of prebiotic evolution.
Collapse
Affiliation(s)
- Yu Liu
- From the Department of Mathematics, Uppsala University, 75105 Uppsala, Sweden
| | - David J T Sumpter
- From the Department of Mathematics, Uppsala University, 75105 Uppsala, Sweden
| |
Collapse
|
10
|
Abstract
Background This essay highlights critical aspects of the plausibility of pre-Darwinian evolution. It is based on a critical review of some better-known open, far-from-equilibrium system-based scenarios supposed to explain processes that took place before Darwinian evolution had emerged and that resulted in the origin of the first systems capable of Darwinian evolution. The researchers’ responses to eight crucial questions are reviewed. The majority of the researchers claim that there would have been an evolutionary continuity between chemistry and “biology”. A key question is how did this evolution begin before Darwinian evolution had begun? In other words the question is whether pre-Darwinian evolution is plausible. Results Strengths and weaknesses of the reviewed scenarios are presented. They are distinguished between metabolism-first, replicator-first and combined metabolism-replicator models. The metabolism-first scenarios show major issues, the worst concerns heredity and chirality. Although the replicator-first scenarios answer the heredity question they have their own problems, notably chirality. Among the reviewed combined metabolism-replicator models, one shows the fewest issues. In particular, it seems to answer the chiral question, and eventually implies Darwinian evolution from the very beginning. Its main hypothesis needs to be validated with experimental data. Conclusion From this critical review it is that the concept of “pre-Darwinian evolution” appears questionable, in particular because it is unlikely if not impossible that any evolution in complexity over time may work without multiplication and heritability allowing the emergence of genetically and ecologically diverse lineages on which natural selection may operate. Only Darwinian evolution could have led to such an evolution. Thus, Pre-Darwinian evolution is not plausible according to the author. Surely, the answer to the question posed in the title is a prerequisite to the understanding of the origin of Darwinian evolution. Reviewers This article was reviewed by Purificacion Lopez-Garcia, Anthony Poole, Doron Lancet, and Thomas Dandekar.
Collapse
|
11
|
Lancet D, Zidovetzki R, Markovitch O. Systems protobiology: origin of life in lipid catalytic networks. J R Soc Interface 2018; 15:20180159. [PMID: 30045888 PMCID: PMC6073634 DOI: 10.1098/rsif.2018.0159] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
Life is that which replicates and evolves, but there is no consensus on how life emerged. We advocate a systems protobiology view, whereby the first replicators were assemblies of spontaneously accreting, heterogeneous and mostly non-canonical amphiphiles. This view is substantiated by rigorous chemical kinetics simulations of the graded autocatalysis replication domain (GARD) model, based on the notion that the replication or reproduction of compositional information predated that of sequence information. GARD reveals the emergence of privileged non-equilibrium assemblies (composomes), which portray catalysis-based homeostatic (concentration-preserving) growth. Such a process, along with occasional assembly fission, embodies cell-like reproduction. GARD pre-RNA evolution is evidenced in the selection of different composomes within a sparse fitness landscape, in response to environmental chemical changes. These observations refute claims that GARD assemblies (or other mutually catalytic networks in the metabolism first scenario) cannot evolve. Composomes represent both a genotype and a selectable phenotype, anteceding present-day biology in which the two are mostly separated. Detailed GARD analyses show attractor-like transitions from random assemblies to self-organized composomes, with negative entropy change, thus establishing composomes as dissipative systems-hallmarks of life. We show a preliminary new version of our model, metabolic GARD (M-GARD), in which lipid covalent modifications are orchestrated by non-enzymatic lipid catalysts, themselves compositionally reproduced. M-GARD fills the gap of the lack of true metabolism in basic GARD, and is rewardingly supported by a published experimental instance of a lipid-based mutually catalytic network. Anticipating near-future far-reaching progress of molecular dynamics, M-GARD is slated to quantitatively depict elaborate protocells, with orchestrated reproduction of both lipid bilayer and lumenal content. Finally, a GARD analysis in a whole-planet context offers the potential for estimating the probability of life's emergence. The invigorated GARD scrutiny presented in this review enhances the validity of autocatalytic sets as a bona fide early evolution scenario and provides essential infrastructure for a paradigm shift towards a systems protobiology view of life's origin.
Collapse
Affiliation(s)
- Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raphael Zidovetzki
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Omer Markovitch
- Origins Center, Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Blue Marble Space Institute of Science, Seattle, WA, USA
| |
Collapse
|
12
|
Markovitch O, Krasnogor N. Predicting species emergence in simulated complex pre-biotic networks. PLoS One 2018; 13:e0192871. [PMID: 29447212 PMCID: PMC5813963 DOI: 10.1371/journal.pone.0192871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022] Open
Abstract
An intriguing question in evolution is what would happen if one could "replay" life's tape. Here, we explore the following hypothesis: when replaying the tape, the details ("decorations") of the outcomes would vary but certain "invariants" might emerge across different life-tapes sharing similar initial conditions. We use large-scale simulations of an in silico model of pre-biotic evolution called GARD (Graded Autocatalysis Replication Domain) to test this hypothesis. GARD models the temporal evolution of molecular assemblies, governed by a rates matrix (i.e. network) that biases different molecules' likelihood of joining or leaving a dynamically growing and splitting assembly. Previous studies have shown the emergence of so called compotypes, i.e., species capable of replication and selection response. Here, we apply networks' science to ascertain the degree to which invariants emerge across different life-tapes under GARD dynamics and whether one can predict these invariant from the chemistry specification alone (i.e. GARD's rates network representing initial conditions). We analysed the (complex) rates' network communities and asked whether communities are related (and how) to the emerging species under GARD's dynamic, and found that the communities correspond to the species emerging from the simulations. Importantly, we show how to use the set of communities detected to predict species emergence without performing any simulations. The analysis developed here may impact complex systems simulations in general.
Collapse
Affiliation(s)
- Omer Markovitch
- Interdisciplinary Computing and Complex Bio-Systems research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United-Kingdom
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Bio-Systems research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United-Kingdom
| |
Collapse
|
13
|
Szilágyi A, Zachar I, Scheuring I, Kun Á, Könnyű B, Czárán T. Ecology and Evolution in the RNA World Dynamics and Stability of Prebiotic Replicator Systems. Life (Basel) 2017; 7:E48. [PMID: 29186916 PMCID: PMC5745561 DOI: 10.3390/life7040048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules) may have been responsible for booting up life almost four billion years ago. The many different incarnations of nucleotide sequence (string) replicator models proposed recently are all attempts to explain on this basis how the genetic information transfer and the functional diversity of prebiotic replicator systems may have emerged, persisted and evolved into the first living cell. We have postulated three necessary conditions for an RNA World model system to be a dynamically feasible representation of prebiotic chemical evolution: (1) it must maintain and transfer a sufficient diversity of information reliably and indefinitely, (2) it must be ecologically stable and (3) it must be evolutionarily stable. In this review, we discuss the best-known prebiotic scenarios and the corresponding models of string-replicator dynamics and assess them against these criteria. We suggest that the most popular of prebiotic replicator systems, the hypercycle, is probably the worst performer in almost all of these respects, whereas a few other model concepts (parabolic replicator, open chaotic flows, stochastic corrector, metabolically coupled replicator system) are promising candidates for development into coherent models that may become experimentally accessible in the future.
Collapse
Affiliation(s)
- András Szilágyi
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3, 8237 Tihany, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, 82049 Pullach/Munich, Germany.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány. 1/c, 1117 Budapest, Hungary.
| | - István Zachar
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3, 8237 Tihany, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, 82049 Pullach/Munich, Germany.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány. 1/c, 1117 Budapest, Hungary.
| | - István Scheuring
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3, 8237 Tihany, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány. 1/c, 1117 Budapest, Hungary.
| | - Ádám Kun
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3, 8237 Tihany, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, 82049 Pullach/Munich, Germany.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány. 1/c, 1117 Budapest, Hungary.
| | - Balázs Könnyű
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány. 1/c, 1117 Budapest, Hungary.
| | - Tamás Czárán
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3, 8237 Tihany, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány. 1/c, 1117 Budapest, Hungary.
- Biocomplexity Group, Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, 2100 Copenhagen, Denmark.
| |
Collapse
|
14
|
Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers. Proc Natl Acad Sci U S A 2017; 114:E7460-E7468. [PMID: 28831002 DOI: 10.1073/pnas.1620179114] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It is not known how life originated. It is thought that prebiotic processes were able to synthesize short random polymers. However, then, how do short-chain molecules spontaneously grow longer? Also, how would random chains grow more informational and become autocatalytic (i.e., increasing their own concentrations)? We study the folding and binding of random sequences of hydrophobic ([Formula: see text]) and polar ([Formula: see text]) monomers in a computational model. We find that even short hydrophobic polar (HP) chains can collapse into relatively compact structures, exposing hydrophobic surfaces. In this way, they act as primitive versions of today's protein catalysts, elongating other such HP polymers as ribosomes would now do. Such foldamer catalysts are shown to form an autocatalytic set, through which short chains grow into longer chains that have particular sequences. An attractive feature of this model is that it does not overconverge to a single solution; it gives ensembles that could further evolve under selection. This mechanism describes how specific sequences and conformations could contribute to the chemistry-to-biology (CTB) transition.
Collapse
|