1
|
Jiang H, Lu C, Wu H, Ding J, Li J, Ding J, Gao Y, Wang G, Luo Q. Decreased cold-inducible RNA-binding protein (CIRP) binding to GluRl on neuronal membranes mediates memory impairment resulting from prolonged hypobaric hypoxia exposure. CNS Neurosci Ther 2024; 30:e70059. [PMID: 39315498 PMCID: PMC11420629 DOI: 10.1111/cns.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
AIM To investigate the molecular mechanisms underlying memory impairment induced by high-altitude (HA) hypoxia, specifically focusing on the role of cold-inducible RNA-binding protein (CIRP) in regulating the AMPA receptor subunit GluR1 and its potential as a therapeutic target. METHODS A mouse model was exposed to 14 days of hypobaric hypoxia (HH), simulating conditions at an altitude of 6000 m. Behavioral tests were conducted to evaluate memory function. The expression, distribution, and interaction of CIRP with GluR1 in neuronal cells were analyzed. The binding of CIRP to GluR1 mRNA and its impact on GluR1 protein expression were examined. Additionally, the role of CIRP in GluR1 regulation was assessed using Cirp knockout mice. The efficacy of the Tat-C16 peptide, which consists of the Tat sequence combined with the CIRP 110-125 amino acid sequence, was also tested for its ability to mitigate HH-induced memory decline. RESULTS CIRP was primarily localized in neurons, with its expression significantly reduced following HH exposure. This reduction was associated with decreased GluR1 protein expression on the cell membrane and increased localization in the cytoplasm. The interaction between CIRP and GluR1 was diminished under HH conditions, leading to reduced GluR1 stability on the cell membrane and increased cytoplasmic relocation. These changes resulted in a decreased number of synapses and dendritic spines, impairing learning and memory functions. Administration of the Tat-C16 peptide effectively ameliorated these impairments by modulating GluR1 expression and distribution in HH-exposed mice. CONCLUSION CIRP plays a critical role in maintaining synaptic integrity under hypoxic conditions by regulating GluR1 expression and distribution. The Tat-C16 peptide shows promise as a therapeutic strategy for alleviating cognitive decline associated with HA hypoxia.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
- College of High‐Altitude Military MedicineInstitute of Medicine and Hygienic Equipment for High Altitude Region, Army Medical UniversityChongqingChina
| | - Chenyan Lu
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Haoyang Wu
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Jie Ding
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Jiayan Li
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Jianfeng Ding
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Yuqi Gao
- College of High‐Altitude Military MedicineInstitute of Medicine and Hygienic Equipment for High Altitude Region, Army Medical UniversityChongqingChina
- Key Laboratory of Extreme Environmental Medicine and High‐Altitude Medicine, Ministry of Education of ChinaChongqingChina
| | - Guohua Wang
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Qianqian Luo
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| |
Collapse
|
2
|
Wang X, Zheng W, Zhu Z, Xing B, Yan W, Zhu K, Xiao L, Yang C, Wei M, Yang L, Jin ZB, Bi X, Zhang C. Timp1 Deletion Induces Anxiety-like Behavior in Mice. Neurosci Bull 2024; 40:732-742. [PMID: 38113013 PMCID: PMC11178759 DOI: 10.1007/s12264-023-01163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/25/2023] [Indexed: 12/21/2023] Open
Abstract
The hippocampus is essential for learning and memory, but it also plays an important role in regulating emotional behavior, as hippocampal excitability and plasticity affect anxiety and fear. Brain synaptic plasticity may be regulated by tissue inhibitor of matrix metalloproteinase 1 (TIMP1), a known protein inhibitor of extracellular matrix (ECM), and the expression of TIMP1 in the hippocampus can be induced by neuronal excitation and various stimuli. However, the involvement of Timp1 in fear learning, anxiety, and hippocampal synaptic function remains to be established. Our study of Timp1 function in vivo revealed that Timp1 knockout mice exhibit anxiety-like behavior but normal fear learning. Electrophysiological results suggested that Timp1 knockout mice showed hyperactivity in the ventral CA1 region, but the basic synaptic transmission and plasticity were normal in the Schaffer collateral pathway. Taken together, our results suggest that deletion of Timp1 in vivo leads to the occurrence of anxiety behaviors, but that Timp1 is not crucial for fear learning.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Wei Zheng
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Ziyi Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Biyu Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weijie Yan
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Ke Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Lingli Xiao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chaojuan Yang
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Mengping Wei
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Lei Yang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Zi-Bing Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Xueyun Bi
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
| | - Chen Zhang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
3
|
Khan R, Kulasiri D, Samarasinghe S. A multifarious exploration of synaptic tagging and capture hypothesis in synaptic plasticity: Development of an integrated mathematical model and computational experiments. J Theor Biol 2023; 556:111326. [PMID: 36279957 DOI: 10.1016/j.jtbi.2022.111326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
The synaptic tagging and capture (STC) hypothesis not only explain the integration and association of synaptic activities, but also the formation of learning and memory. The synaptic pathways involved in the synaptic tagging and capture phenomenon are called STC pathways. The STC hypothesis provides a potential explanation of the neuronal and synaptic processes underlying the synaptic consolidation of memories. Several mechanisms and molecules have been proposed to explain the process of memory allocation and synaptic tags, respectively. However, a clear link between the STC hypothesis and memory allocation is still missing because the encoding of memories in neural circuits is mainly associated with strongly recurrently connected groups of neurons. To explore the mechanisms of potential synaptic tagging candidates and their involvement in the process of memory allocation, we develop a mathematical model for a single dendritic spine based on five essential criteria of a synaptic tag. By developing a mathematical model, we attempt to understand the roles of the potentially critical molecular networks underlying the STC and the essential attributes of a synaptic tag. We include essential memory molecules in the STC model that have been identified in earlier studies as crucial for STC pathways. CaMKII activation is critical for the setting of the initial tag; however, coordinated activities with other kinases and the biochemical pathways are necessary for the tag to be stable. PKA modulates NMDAR-mediated Ca2+ signalling. Similarly, PKA and ERK crosstalk is essential for Ca2+ - mediated protein synthesis during l-LTP. Our theoretical model explains the quantitative contribution of Tags and protein synthesis during l-LTP in synaptic strength.
Collapse
Affiliation(s)
- Raheel Khan
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - D Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand.
| | - S Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
5
|
A Modeling and Analysis Study Reveals That CaMKII in Synaptic Plasticity Is a Dominant Affecter in CaM Systems in a T286 Phosphorylation-Dependent Manner. Molecules 2022; 27:molecules27185974. [PMID: 36144710 PMCID: PMC9501549 DOI: 10.3390/molecules27185974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
NMDAR-dependent synaptic plasticity in the hippocampus consists of two opposing forces: long-term potentiation (LTP), which strengthens synapses and long-term depression (LTD), which weakens synapses. LTP and LTD are associated with memory formation and loss, respectively. Synaptic plasticity is controlled at a molecular level by Ca2+-mediated protein signaling. Here, Ca2+ binds the protein, calmodulin (CaM), which modulates synaptic plasticity in both directions. This is because Ca2+-bound CaM activates both LTD-and LTP-inducing proteins. Understanding how CaM responds to Ca2+ signaling and how this translates into synaptic plasticity is therefore important to understanding synaptic plasticity induction. In this paper, CaM activation by Ca2+ and calmodulin binding to downstream proteins was mathematically modeled using differential equations. Simulations were monitored with and without theoretical knockouts and, global sensitivity analyses were performed to determine how Ca2+/CaM signaling occurred at various Ca2+ signals when CaM levels were limiting. At elevated stimulations, the total CaM pool rapidly bound to its protein binding targets which regulate both LTP and LTD. This was followed by CaM becoming redistributed from low-affinity to high-affinity binding targets. Specifically, CaM was redistributed away from LTD-inducing proteins to bind the high-affinity LTP-inducing protein, calmodulin-dependent kinase II (CaMKII). In this way, CaMKII acted as a dominant affecter and repressed activation of opposing CaM-binding protein targets. The model thereby showed a novel form of CaM signaling by which the two opposing pathways crosstalk indirectly. The model also found that CaMKII can repress cAMP production by repressing CaM-regulated proteins, which catalyze cAMP production. The model also found that at low Ca2+ stimulation levels, typical of LTD induction, CaM signaling was unstable and is therefore unlikely to alone be enough to induce synaptic depression. Overall, this paper demonstrates how limiting levels of CaM may be a fundamental aspect of Ca2+ regulated signaling which allows crosstalk among proteins without requiring directly interaction.
Collapse
|
7
|
Convolvulus pluricaulis extract can modulate synaptic plasticity in rat brain hippocampus. Neuroreport 2020; 31:597-604. [PMID: 32282574 DOI: 10.1097/wnr.0000000000001446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The memory-boosting property of Indian traditional herb, Convolvulus pluricaulis, has been documented in literature; however, its effect on synaptic plasticity has not yet been reported. Two important forms of synaptic plasticity known to be involved in the processes of memory formation are long-term potentiation (LTP) and long-term depression (LTD). In the present study, the effect of C. pluricaulis plant extract on LTP and LTD were evaluated. The adult male Wistar rats were fed orally with 250, 500 and 1000 mg/kg of this extract for 4 weeks and the effect was determined on LTP and LTD in the Schaffer collaterals of the hippocampal cornu ammonis region CA1. We found that the 500 mg/kg dose of the extract could significantly enhance LTP compared to the vehicle treated ones. Moreover, the same dose could also reduce LTD while used in a separate set of animals. Also, a fresh group of animals treated with the effective dose (500 mg/kg) of plant extract were examined for memory retention in two behavioral platforms namely, contextual fear conditioning (CFC) and novel object recognition test (NORT). Increased fear response to the conditioned stimulus and enhanced recognition of objects were observed in CFC and NORT, respectively, both indicating strengthening of memory. Following up, ex-vivo electrophysiology experiments were performed with the active single molecule scopoletin, present in C. pluricaulis extract and similar patterns in synaptic plasticity changes were obtained. These findings suggest that prolonged treatment of C. pluricaulis extract, at a specific dose in healthy animals, can augment memory functions by modulating hippocampal plasticity.
Collapse
|
8
|
Romano DR, Pharris MC, Patel NM, Kinzer-Ursem TL. Competitive tuning: Competition's role in setting the frequency-dependence of Ca2+-dependent proteins. PLoS Comput Biol 2017; 13:e1005820. [PMID: 29107982 PMCID: PMC5690689 DOI: 10.1371/journal.pcbi.1005820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/16/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023] Open
Abstract
A number of neurological disorders arise from perturbations in biochemical signaling and protein complex formation within neurons. Normally, proteins form networks that when activated produce persistent changes in a synapse’s molecular composition. In hippocampal neurons, calcium ion (Ca2+) flux through N-methyl-D-aspartate (NMDA) receptors activates Ca2+/calmodulin signal transduction networks that either increase or decrease the strength of the neuronal synapse, phenomena known as long-term potentiation (LTP) or long-term depression (LTD), respectively. The calcium-sensor calmodulin (CaM) acts as a common activator of the networks responsible for both LTP and LTD. This is possible, in part, because CaM binding proteins are “tuned” to different Ca2+ flux signals by their unique binding and activation dynamics. Computational modeling is used to describe the binding and activation dynamics of Ca2+/CaM signal transduction and can be used to guide focused experimental studies. Although CaM binds over 100 proteins, practical limitations cause many models to include only one or two CaM-activated proteins. In this work, we view Ca2+/CaM as a limiting resource in the signal transduction pathway owing to its low abundance relative to its binding partners. With this view, we investigate the effect of competitive binding on the dynamics of CaM binding partner activation. Using an explicit model of Ca2+, CaM, and seven highly-expressed hippocampal CaM binding proteins, we find that competition for CaM binding serves as a tuning mechanism: the presence of competitors shifts and sharpens the Ca2+ frequency-dependence of CaM binding proteins. Notably, we find that simulated competition may be sufficient to recreate the in vivo frequency dependence of the CaM-dependent phosphatase calcineurin. Additionally, competition alone (without feedback mechanisms or spatial parameters) could replicate counter-intuitive experimental observations of decreased activation of Ca2+/CaM-dependent protein kinase II in knockout models of neurogranin. We conclude that competitive tuning could be an important dynamic process underlying synaptic plasticity. Learning and memory formation are likely associated with dynamic fluctuations in the connective strength of neuronal synapses. These fluctuations, called synaptic plasticity, are regulated by calcium ion (Ca2+) influx through ion channels localized to the post-synaptic membrane. Within the post-synapse, the dominant Ca2+ sensor protein, calmodulin (CaM), may activate a variety of downstream binding partners, each contributing to synaptic plasticity outcomes. The conditions at which certain binding partners most strongly activate are increasingly studied using computational models. Nearly all computational studies describe these binding partners in combinations of only one or two CaM binding proteins. In contrast, we combine seven well-studied CaM binding partners into a single model wherein they simultaneously compete for access to CaM. Our dynamic model suggests that competition narrows the window of conditions for optimal activation of some binding partners, mimicking the Ca2+-frequency dependence of some proteins in vivo. Further characterization of CaM-dependent signaling dynamics in neuronal synapses may benefit our understanding of learning and memory formation. Furthermore, we propose that competitive binding may be another framework, alongside feedback and feed-forward loops, signaling motifs, and spatial localization, that can be applied to other signal transduction networks, particularly second messenger cascades, to explain the dynamical behavior of protein activation.
Collapse
Affiliation(s)
- Daniel R. Romano
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Matthew C. Pharris
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Neal M. Patel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Tamara L. Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|