1
|
Assila N, Begon M, Duprey S. Finite Element Model of the Shoulder with Active Rotator Cuff Muscles: Application to Wheelchair Propulsion. Ann Biomed Eng 2024; 52:1240-1254. [PMID: 38376768 DOI: 10.1007/s10439-024-03449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
The rotator cuff is prone to injury, remarkably so for manual wheelchair users. To understand its pathomechanisms, finite element models incorporating three-dimensional activated muscles are needed to predict soft tissue strains during given tasks. This study aimed to develop such a model to understand pathomechanisms associated with wheelchair propulsion. We developed an active muscle model associating a passive fiber-reinforced isotropic matrix with an activation law linking calcium ion concentration to tissue tension. This model was first evaluated against known physiological muscle behavior; then used to activate the rotator cuff during a wheelchair propulsion cycle. Here, experimental kinematics and electromyography data was used to drive a shoulder finite element model. Finally, we evaluated the importance of muscle activation by comparing the results of activated and non-activated rotator cuff muscles during both propulsion and isometric contractions. Qualitatively, the muscle constitutive law reasonably reproduced the classical Hill model force-length curve and the behavior of a transversally loaded muscle. During wheelchair propulsion, the deformation and fiber stretch of the supraspinatus muscle-tendon unit pointed towards the possibility for this tendon to develop tendinosis due to the multiaxial loading imposed by the kinematics of propulsion. Finally, differences in local stretch and positions of the lines of action between activated and non-activated models were only observed at activation levels higher than 30%. Our novel finite element model with active muscles is a promising tool for understanding the pathomechanisms of the rotator cuff for various dynamic tasks, especially those with high muscle activation levels.
Collapse
Affiliation(s)
- Najoua Assila
- School of Kinesiology and Exercise Sciences, Faculty of Medicine, University of Montréal, Montréal, QC, Canada.
- Research Center of the Sainte-Justine University Hospital Center, Montréal, QC, Canada.
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR T_9406, 69622, Lyon, France.
| | - Mickaël Begon
- School of Kinesiology and Exercise Sciences, Faculty of Medicine, University of Montréal, Montréal, QC, Canada
- Research Center of the Sainte-Justine University Hospital Center, Montréal, QC, Canada
| | - Sonia Duprey
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR T_9406, 69622, Lyon, France
| |
Collapse
|
2
|
Leib R, Howard IS, Millard M, Franklin DW. Behavioral Motor Performance. Compr Physiol 2023; 14:5179-5224. [PMID: 38158372 DOI: 10.1002/cphy.c220032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The human sensorimotor control system has exceptional abilities to perform skillful actions. We easily switch between strenuous tasks that involve brute force, such as lifting a heavy sewing machine, and delicate movements such as threading a needle in the same machine. Using a structure with different control architectures, the motor system is capable of updating its ability to perform through our daily interaction with the fluctuating environment. However, there are issues that make this a difficult computational problem for the brain to solve. The brain needs to control a nonlinear, nonstationary neuromuscular system, with redundant and occasionally undesired degrees of freedom, in an uncertain environment using a body in which information transmission is subject to delays and noise. To gain insight into the mechanisms of motor control, here we survey movement laws and invariances that shape our everyday motion. We then examine the major solutions to each of these problems in the three parts of the sensorimotor control system, sensing, planning, and acting. We focus on how the sensory system, the control architectures, and the structure and operation of the muscles serve as complementary mechanisms to overcome deviations and disturbances to motor behavior and give rise to skillful motor performance. We conclude with possible future research directions based on suggested links between the operation of the sensorimotor system across the movement stages. © 2024 American Physiological Society. Compr Physiol 14:5179-5224, 2024.
Collapse
Affiliation(s)
- Raz Leib
- Neuromuscular Diagnostics, TUM School of Medicine and Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Germany
| | - Ian S Howard
- School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, UK
| | - Matthew Millard
- Institute of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
- Institute of Engineering and Computational Mechanics, University of Stuttgart, Stuttgart, Germany
| | - David W Franklin
- Neuromuscular Diagnostics, TUM School of Medicine and Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Chacon PFS, Hammer M, Wochner I, Walter JR, Schmitt S. A physiologically enhanced muscle spindle model: using a Hill-type model for extrafusal fibers as template for intrafusal fibers. Comput Methods Biomech Biomed Engin 2023:1-20. [PMID: 38126259 DOI: 10.1080/10255842.2023.2293652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The muscle spindle is an essential proprioceptor, significantly involved in sensing limb position and movement. Although biological spindle models exist for years, the gold-standard for motor control in biomechanics are still sensors built of homogenized spindle output models due to their simpler combination with neuro-musculoskeletal models. Aiming to improve biomechanical simulations, this work establishes a more physiological model of the muscle spindle, aligned to the advantage of easy integration into large-scale musculoskeletal models. We implemented four variations of a spindle model in Matlab/Simulink®: the Mileusnic et al. (2006) model, Mileusnic model without mass, our enhanced Hill-type model, and our enhanced Hill-type model with parallel damping element (PDE). Different stretches in the intrafusal fibers were simulated in all model variations following the spindle afferent recorded in previous experiments in feline soleus muscle. Additionally, the enhanced Hill-type models had their parameters extensively optimized to match the experimental conditions, and the resulting model was validated against data from rats' triceps surae muscle. As result, the Mileusnic models present a better overall performance generating the afferent firings compared to the common data evaluated. However, the enhanced Hill-type model with PDE exhibits a more stable performance than the original Mileusnic model, at the same time that presents a well-tuned Hill-type model as muscle spindle fibers, and also accounts for real sarcomere force-length and force-velocity aspects. Finally, our activation dynamics is similar to the one applied to Hill-type model for extrafusal fibers, making our proposed model more easily integrated in multi-body simulations.
Collapse
Affiliation(s)
- Pablo F S Chacon
- Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Maria Hammer
- Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Isabell Wochner
- Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
- Institute of Computer Engineering, University of Heidelberg, Heidelberg, Germany
| | - Johannes R Walter
- Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Martynenko OV, Kempter F, Kleinbach C, Nölle LV, Lerge P, Schmitt S, Fehr J. Development and verification of a physiologically motivated internal controller for the open-source extended Hill-type muscle model in LS-DYNA. Biomech Model Mechanobiol 2023; 22:2003-2032. [PMID: 37542621 PMCID: PMC10613192 DOI: 10.1007/s10237-023-01748-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/06/2023] [Indexed: 08/07/2023]
Abstract
Nowadays, active human body models are becoming essential tools for the development of integrated occupant safety systems. However, their broad application in industry and research is limited due to the complexity of incorporated muscle controllers, the long simulation runtime, and the non-regular use of physiological motor control approaches. The purpose of this study is to address the challenges in all indicated directions by implementing a muscle controller with several physiologically inspired control strategies into an open-source extended Hill-type muscle model formulated as LS-DYNA user-defined umat41 subroutine written in the Fortran programming language. This results in increased usability, runtime performance and physiological accuracy compared to the standard muscle material existing in LS-DYNA. The proposed controller code is verified with extensive experimental data that include findings for arm muscles, the cervical spine region, and the whole body. Selected verification experiments cover three different muscle activation situations: (1) passive state, (2) open-loop and closed-loop muscle activation, and (3) reflexive behaviour. Two whole body finite element models, the 50th percentile female VIVA OpenHBM and the 50th percentile male THUMS v5, are used for simulations, complemented by the simplified arm model extracted from the 50th percentile male THUMS v3. The obtained results are evaluated additionally with the CORrelation and Analysis methodology and the mean squared error method, showing good to excellent biofidelity and sufficient agreement with the experimental data. It was shown additionally how the integrated controller allows simplified mimicking of the movements for similar musculoskeletal models using the parameters transfer method. Furthermore, the Hill-type muscle model presented in this paper shows better kinematic behaviour even in the passive case compared to the existing one in LS-DYNA due to its improved damping and elastic properties. These findings provide a solid evidence base motivating the application of the enhanced muscle material with the internal controller in future studies with Active Human Body Models under different loading conditions.
Collapse
Affiliation(s)
- Oleksandr V Martynenko
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Nobelstr. 15, 70569, Stuttgart, Germany.
| | - Fabian Kempter
- Institute of Engineering and Computational Mechanics, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Christian Kleinbach
- Institute of Engineering and Computational Mechanics, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Lennart V Nölle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Nobelstr. 15, 70569, Stuttgart, Germany
| | - Patrick Lerge
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Nobelstr. 15, 70569, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Nobelstr. 15, 70569, Stuttgart, Germany.
| | - Jörg Fehr
- Institute of Engineering and Computational Mechanics, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| |
Collapse
|
5
|
Meszaros-Beller L, Hammer M, Schmitt S, Pivonka P. Effect of neglecting passive spinal structures: a quantitative investigation using the forward-dynamics and inverse-dynamics musculoskeletal approach. Front Physiol 2023; 14:1135531. [PMID: 37324394 PMCID: PMC10264677 DOI: 10.3389/fphys.2023.1135531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
Purpose: Inverse-dynamics (ID) analysis is an approach widely used for studying spine biomechanics and the estimation of muscle forces. Despite the increasing structural complexity of spine models, ID analysis results substantially rely on accurate kinematic data that most of the current technologies are not capable to provide. For this reason, the model complexity is drastically reduced by assuming three degrees of freedom spherical joints and generic kinematic coupling constraints. Moreover, the majority of current ID spine models neglect the contribution of passive structures. The aim of this ID analysis study was to determine the impact of modelled passive structures (i.e., ligaments and intervertebral discs) on remaining joint forces and torques that muscles must balance in the functional spinal unit. Methods: For this purpose, an existing generic spine model developed for the use in the demoa software environment was transferred into the musculoskeletal modelling platform OpenSim. The thoracolumbar spine model previously used in forward-dynamics (FD) simulations provided a full kinematic description of a flexion-extension movement. By using the obtained in silico kinematics, ID analysis was performed. The individual contribution of passive elements to the generalised net joint forces and torques was evaluated in a step-wise approach increasing the model complexity by adding individual biological structures of the spine. Results: The implementation of intervertebral discs and ligaments has significantly reduced compressive loading and anterior torque that is attributed to the acting net muscle forces by -200% and -75%, respectively. The ID model kinematics and kinetics were cross-validated against the FD simulation results. Conclusion: This study clearly shows the importance of incorporating passive spinal structures on the accurate computation of remaining joint loads. Furthermore, for the first time, a generic spine model was used and cross-validated in two different musculoskeletal modelling platforms, i.e., demoa and OpenSim, respectively. In future, a comparison of neuromuscular control strategies for spinal movement can be investigated using both approaches.
Collapse
Affiliation(s)
- Laura Meszaros-Beller
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Maria Hammer
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Syn Schmitt
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Zhang Y, Yin D, Pang X, Deng Z, Yan S. Biomechanical properties of honeybee abdominal muscles during stretch activation. J Mech Behav Biomed Mater 2023; 138:105639. [PMID: 36577321 DOI: 10.1016/j.jmbbm.2022.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The mechanical properties of the honeybee's abdominal muscles endow its abdomen with movement flexibility to perform various activities. However, the biomechanical properties of abdominal muscles during stretch activation remain unclear. To clarify this issue, we observed the microstructures of the abdominal muscles to obtain structural information. The similarity and symmetry of abdominal muscle distribution contribute to the ability to drive abdominal movement. Combined with the segmented structure characteristics, an experimental device to measure muscle stretch measurement of honeybees was developed to investigate the mechanical properties of the abdominal muscles. During measurement, the muscles were kept in a solution to maintain a physiological environment. The mechanical properties of abdominal muscles included phases: the ascending phase with proportional increase, stable phase with slight fluctuation, and decay phase with parabolic decline. These findings indicate that the nonlinear and rate-sensitive mechanical properties of the abdominal muscles enable them to rapidly adapt to environmental changes. The stretch force and stiffness coefficient reached 0.660 ± 0.139 mN and 14.364 ± 2.961 N/m, respectively. A simplified biomechanical model of the muscle fiber considering the hierarchical microstructure was introduced, in which the mechanical properties were consistent with the experimental data. Further analysis of the effects of the activation probability and the effective range of binding sites on the mechanical properties demonstrated the critical role in force generation, revealing the mechanism of underlying muscle stretch activation in the honeybee abdomen. The findings can provide a new reference for studying the biomechanical properties of the muscles of other arthropod insects.
Collapse
Affiliation(s)
- Yuling Zhang
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Danni Yin
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Xu Pang
- School of Engineering and Technology, China University of Geosciences (Beijing), 100083, Beijing, PR China
| | - Zhizhong Deng
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Shaoze Yan
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
7
|
Meszaros-Beller L, Hammer M, Riede JM, Pivonka P, Little JP, Schmitt S. Effects of geometric individualisation of a human spine model on load sharing: neuro-musculoskeletal simulation reveals significant differences in ligament and muscle contribution. Biomech Model Mechanobiol 2023; 22:669-694. [PMID: 36602716 PMCID: PMC10097810 DOI: 10.1007/s10237-022-01673-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
In spine research, two possibilities to generate models exist: generic (population-based) models representing the average human and subject-specific representations of individuals. Despite the increasing interest in subject specificity, individualisation of spine models remains challenging. Neuro-musculoskeletal (NMS) models enable the analysis and prediction of dynamic motions by incorporating active muscles attaching to bones that are connected using articulating joints under the assumption of rigid body dynamics. In this study, we used forward-dynamic simulations to compare a generic NMS multibody model of the thoracolumbar spine including fully articulated vertebrae, detailed musculature, passive ligaments and linear intervertebral disc (IVD) models with an individualised model to assess the contribution of individual biological structures. Individualisation was achieved by integrating skeletal geometry from computed tomography and custom-selected muscle and ligament paths. Both models underwent a gravitational settling process and a forward flexion-to-extension movement. The model-specific load distribution in an equilibrated upright position and local stiffness in the L4/5 functional spinal unit (FSU) is compared. Load sharing between occurring internal forces generated by individual biological structures and their contribution to the FSU stiffness was computed. The main finding of our simulations is an apparent shift in load sharing with individualisation from an equally distributed element contribution of IVD, ligaments and muscles in the generic spine model to a predominant muscle contribution in the individualised model depending on the analysed spine level.
Collapse
Affiliation(s)
- Laura Meszaros-Beller
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.,Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Maria Hammer
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Julia M Riede
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - J Paige Little
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Syn Schmitt
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia. .,Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany. .,Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
8
|
Nölle LV, Mishra A, Martynenko OV, Schmitt S. Evaluation of muscle strain injury severity in active human body models. J Mech Behav Biomed Mater 2022; 135:105463. [PMID: 36137370 DOI: 10.1016/j.jmbbm.2022.105463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/04/2021] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
Even though significant efforts in the field of injury detection with finite element active human body models (FE AHBMs) have been made, injuries of the muscle-tendon unit (MTU) have not yet been taken into consideration. Therefore, the goal of this study was to define a muscle strain injury criterion (MSIC) to evaluate the damage sustained by the musculature during muscle driven movement scenarios. The MSIC was derived from biomechanical tests found in the literature and the proposed threshold values were substantiated through a comparison to an estimate of the ultimate tensile strength of human skeletal muscle and the forces acting on the biceps femoris long head muscle during one sprinting gait cycle. The application of the MSIC to state-of-the-art FE AHBMs was demonstrated by evaluating the strain injury severity of selected neck muscles of a full-body AHBM during two seat rotation load cases. The results of the MSIC substantiation suggest that all three injury threshold values proposed in this work fall in a plausible corridor of forces acting on the MTU. The combined results of the AHBM simulations indicate that neither of the two examined seat rotations are likely to cause strain injury to the neck muscles and that the proposed MSIC can easily be applied to current AHBMs without further modification of the model architecture or the muscle parameters. The MSIC was also used to formulate a hypothesis on the aetiology of muscle strain injuries, through which it was demonstrated that material inhomogeneities in the MTU might be the cause for strain injuries sustained during otherwise physiological movements. This work is a first step in the direction of the definition of a wholistic injury criterion for the human skeletal muscle fibre.
Collapse
Affiliation(s)
- Lennart V Nölle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.
| | - Atul Mishra
- Mercedes-Benz Research and Development, Bangalore, India
| | - Oleksandr V Martynenko
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
9
|
Rockenfeller R, Günther M, Hooper SL. Muscle active force-length curve explained by an electrophysical model of interfilament spacing. Biophys J 2022; 121:1823-1855. [PMID: 35450825 PMCID: PMC9199101 DOI: 10.1016/j.bpj.2022.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
The active isometric force-length relation (FLR) of striated muscle sarcomeres is central to understanding and modeling muscle function. The mechanistic basis of the descending arm of the FLR is well explained by the decreasing thin:thick filament overlap that occurs at long sarcomere lengths. The mechanistic basis of the ascending arm of the FLR (the decrease in force that occurs at short sarcomere lengths), alternatively, has never been well explained. Because muscle is a constant-volume system, interfilament lattice distances must increase as sarcomere length shortens. This increase would decrease thin and thick-filament electrostatic interactions independently of thin:thick filament overlap. To examine this effect, we present here a fundamental, physics-based model of the sarcomere that includes filament molecular properties, calcium binding, sarcomere geometry including both thin:thick filament overlap and interfilament radial distance, and electrostatics. The model gives extremely good fits to existing FLR data from a large number of different muscles across their entire range of measured activity levels, with the optimized parameter values in all cases lying within anatomically and physically reasonable ranges. A local first-order sensitivity analysis (varying individual parameters while holding the values of all others constant) shows that model output is most sensitive to a subset of model parameters, most of which are related to sarcomere geometry, with model output being most sensitive to interfilament radial distance. This conclusion is supported by re-running the fits with only this parameter subset being allowed to vary, which increases fit errors only moderately. These results show that the model well reproduces existing experimental data, and indicate that changes in interfilament spacing play as central a role as changes in filament overlap in determining the FLR, particularly on its ascending arm.
Collapse
Affiliation(s)
| | - Michael Günther
- Biomechanics and Biorobotics, Stuttgart Center for Simulation Sciences (SC SimTech), Universität Stuttgart, Stuttgart, Germany; Friedrich-Schiller-Universität, Jena, Germany
| | - Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, Ohio
| |
Collapse
|
10
|
Walter JR, Günther M, Haeufle DFB, Schmitt S. A geometry- and muscle-based control architecture for synthesising biological movement. BIOLOGICAL CYBERNETICS 2021; 115:7-37. [PMID: 33590348 PMCID: PMC7925510 DOI: 10.1007/s00422-020-00856-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
A key problem for biological motor control is to establish a link between an idea of a movement and the generation of a set of muscle-stimulating signals that lead to the movement execution. The number of signals to generate is thereby larger than the body's mechanical degrees of freedom in which the idea of the movement may be easily expressed, as the movement is actually executed in this space. A mathematical formulation that provides a solving link is presented in this paper in the form of a layered, hierarchical control architecture. It is meant to synthesise a wide range of complex three-dimensional muscle-driven movements. The control architecture consists of a 'conceptional layer', where the movement is planned, a 'structural layer', where the muscles are stimulated, and between both an additional 'transformational layer', where the muscle-joint redundancy is resolved. We demonstrate the operativeness by simulating human stance and squatting in a three-dimensional digital human model (DHM). The DHM considers 20 angular DoFs and 36 Hill-type muscle-tendon units (MTUs) and is exposed to gravity, while its feet contact the ground via reversible stick-slip interactions. The control architecture continuously stimulates all MTUs ('structural layer') based on a high-level, torque-based task formulation within its 'conceptional layer'. Desired states of joint angles (postural plan) are fed to two mid-level joint controllers in the 'transformational layer'. The 'transformational layer' communicates with the biophysical structures in the 'structural layer' by providing direct MTU stimulation contributions and further input signals for low-level MTU controllers. Thereby, the redundancy of the MTU stimulations with respect to the joint angles is resolved, i.e. a link between plan and execution is established, by exploiting some properties of the biophysical structures modelled. The resulting joint torques generated by the MTUs via their moment arms are fed back to the conceptional layer, closing the high-level control loop. Within our mathematical formulations of the Jacobian matrix-based layer transformations, we identify the crucial information for the redundancy solution to be the muscle moment arms, the stiffness relations of muscle and tendon tissue within the muscle model, and the length-stimulation relation of the muscle activation dynamics. The present control architecture allows the straightforward feeding of conceptional movement task formulations to MTUs. With this approach, the problem of movement planning is eased, as solely the mechanical system has to be considered in the conceptional plan.
Collapse
Affiliation(s)
- Johannes R Walter
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany.
| | - Michael Günther
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany
| | - Daniel F B Haeufle
- Center of Neurology, Hertie Institute for Clinical Brain Research, Otfried-Müller-Strasse 25, 72076, Tübingen, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany
- Stuttgart Center of Simulation Science (SimTech), Pfaffenwaldring 7a, 70569, Stuttgart, Germany
| |
Collapse
|
11
|
Haeufle DFB, Wochner I, Holzmüller D, Driess D, Günther M, Schmitt S. Muscles Reduce Neuronal Information Load: Quantification of Control Effort in Biological vs. Robotic Pointing and Walking. Front Robot AI 2021; 7:77. [PMID: 33501244 PMCID: PMC7805995 DOI: 10.3389/frobt.2020.00077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
It is hypothesized that the nonlinear muscle characteristic of biomechanical systems simplify control in the sense that the information the nervous system has to process is reduced through off-loading computation to the morphological structure. It has been proposed to quantify the required information with an information-entropy based approach, which evaluates the minimally required information to control a desired movement, i.e., control effort. The key idea is to compare the same movement but generated by different actuators, e.g., muscles and torque actuators, and determine which of the two morphologies requires less information to generate the same movement. In this work, for the first time, we apply this measure to numerical simulations of more complex human movements: point-to-point arm movements and walking. These models consider up to 24 control signals rendering the brute force approach of the previous implementation to search for the minimally required information futile. We therefore propose a novel algorithm based on the pattern search approach specifically designed to solve this constraint optimization problem. We apply this algorithm to numerical models, which include Hill-type muscle-tendon actuation as well as ideal torque sources acting directly on the joints. The controller for the point-to-point movements was obtained by deep reinforcement learning for muscle and torque actuators. Walking was controlled by proprioceptive neural feedback in the muscular system and a PD controller in the torque model. Results show that the neuromuscular models consistently require less information to successfully generate the movement than the torque-driven counterparts. These findings were consistent for all investigated controllers in our experiments, implying that this is a system property, not a controller property. The proposed algorithm to determine the control effort is more efficient than other standard optimization techniques and provided as open source.
Collapse
Affiliation(s)
- Daniel F B Haeufle
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Isabell Wochner
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - David Holzmüller
- Machine Learning and Robotics Lab, University of Stuttgart, Stuttgart, Germany.,Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
| | - Danny Driess
- Machine Learning and Robotics Lab, University of Stuttgart, Stuttgart, Germany.,Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Michael Günther
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
12
|
Roux A, Lecompte J, Iordanoff I, Laporte S. Modeling of muscular activation of the muscle-tendon complex using discrete element method. Comput Methods Biomech Biomed Engin 2021; 24:1184-1194. [PMID: 33416406 DOI: 10.1080/10255842.2020.1870039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The tearing of a muscle-tendon complex (MTC) is caused by an eccentric contraction; however, the structures involved and the mechanisms of rupture are not clearly identified. The passive mechanical behavior the MTC has already been modeled and validated with the discrete element method. The muscular activation is the next needed step. The aim of this study is to model the muscle fiber activation and the muscular activation of the MTC to validate their active mechanical behaviors. Each point of the force/length relationship of the MTC (using a parabolic law for the force/length relationship of muscle fibers) is obtained with two steps: 1) a passive tensile (or contractile) test until the desired elongation is reached and 2) fiber activation during a position holding that can be managed thanks to the Discrete Element model. The muscular activation is controlled by the activation of muscle fiber. The global force/length relationship of a single fiber and of the complete MTC during muscular activation is in agreement with literature. The influence of the external shape of the structure and the pennation angle are also investigated. Results show that the different constituents of the MTC (extracellular matrix, tendon), and the geometry, play an important role during the muscular activation and enable to decrease the maximal isometric force of the MTC. Moreover, the maximal isometric force decreases when the pennation angle increases. Further studies will combine muscular activation with a stretching of the MTC, until rupture, in order to numerically reproduce the tearing of the MTC.
Collapse
Affiliation(s)
- Anthony Roux
- Arts et Métiers-Institute of Technology, Institut de Biomécanique Humaine Georges Charpak, LBM, Paris, France.,Arts et Métiers-Institute of Technology, I2M Bordeaux, France
| | - Jennyfer Lecompte
- Arts et Métiers-Institute of Technology, Institut de Biomécanique Humaine Georges Charpak, LBM, Paris, France
| | - Ivan Iordanoff
- Arts et Métiers-Institute of Technology, I2M Bordeaux, France
| | - Sébastien Laporte
- Arts et Métiers-Institute of Technology, Institut de Biomécanique Humaine Georges Charpak, LBM, Paris, France
| |
Collapse
|
13
|
Rockenfeller R, Müller A, Damm N, Kosterhon M, Kantelhardt SR, Frank R, Gruber K. Muscle-driven and torque-driven centrodes during modeled flexion of individual lumbar spines are disparate. Biomech Model Mechanobiol 2020; 20:267-279. [PMID: 32939615 PMCID: PMC7892748 DOI: 10.1007/s10237-020-01382-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022]
Abstract
Lumbar spine biomechanics during the forward-bending of the upper body (flexion) are well investigated by both in vivo and in vitro experiments. In both cases, the experimentally observed relative motion of vertebral bodies can be used to calculate the instantaneous center of rotation (ICR). The timely evolution of the ICR, the centrode, is widely utilized for validating computer models and is thought to serve as a criterion for distinguishing healthy and degenerative motion patterns. While in vivo motion can be induced by physiological active structures (muscles), in vitro spinal segments have to be driven by external torque-applying equipment such as spine testers. It is implicitly assumed that muscle-driven and torque-driven centrodes are similar. Here, however, we show that centrodes qualitatively depend on the impetus. Distinction is achieved by introducing confidence regions (ellipses) that comprise centrodes of seven individual multi-body simulation models, performing flexion with and without preload. Muscle-driven centrodes were generally directed superior–anterior and tail-shaped, while torque-driven centrodes were located in a comparably narrow region close to the center of mass of the caudal vertebrae. We thus argue that centrodes resulting from different experimental conditions ought to be compared with caution. Finally, the applicability of our method regarding the analysis of clinical syndromes and the assessment of surgical methods is discussed.
Collapse
Affiliation(s)
- Robert Rockenfeller
- Mathematical Institute, University Koblenz-Landau, Universitätsstr. 1, 56070, Koblenz, Germany.
| | - Andreas Müller
- Institute for Medical Engineering and Information Processing (MTI Mittelrhein), University Koblenz-Landau, Universitätsstr. 1, 56070, Koblenz, Germany
- Mechanical Systems Engineering Laboratory, EMPA-Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstr. 129, 8600 Dübendorf, Switzerland
| | - Nicolas Damm
- Institute for Medical Engineering and Information Processing (MTI Mittelrhein), University Koblenz-Landau, Universitätsstr. 1, 56070, Koblenz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sven R Kantelhardt
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Rolfdieter Frank
- Mathematical Institute, University Koblenz-Landau, Universitätsstr. 1, 56070, Koblenz, Germany
| | - Karin Gruber
- Institute for Medical Engineering and Information Processing (MTI Mittelrhein), University Koblenz-Landau, Universitätsstr. 1, 56070, Koblenz, Germany
| |
Collapse
|
14
|
Goislard de Monsabert B, Hauraix H, Caumes M, Herbaut A, Berton E, Vigouroux L. Modelling force-length-activation relationships of wrist and finger extensor muscles. Med Biol Eng Comput 2020; 58:2531-2549. [PMID: 32803449 DOI: 10.1007/s11517-020-02239-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/26/2020] [Indexed: 11/25/2022]
Abstract
The wrist and finger extensors play a crucial role in the muscle coordination during grasping tasks. Nevertheless, few data are available regarding their force-generating capacities. The objective of this study was to provide a model of the force-length-activation relationships of the hand extensors using non-invasive methods. The extensor carpi radialis (ECR) and the extensor digitorum communis (EDC) were studied as representative of wrist and finger extensors. Ten participants performed isometric extension force-varying contractions in different postures on an ergometer recording resultant moment. The joint angle, the myotendinous junction displacement and activation were synchronously tracked using motion capture, ultrasound and electromyography. Muscle force was estimated via a musculoskeletal model using the measured joint angle and moment. The force-length-activation relationship was then obtained by fitting a force-length model at different activation levels to the measured data. The obtained relationships agreed with previously reported data regarding muscle architecture, sarcomere length and activation-dependent shift of optimal length. Muscle forces estimated from kinematics and electromyography using the force-length-activation relationships were comparable, below 15% differences, to those estimated from moment via the musculoskeletal model. The obtained quantitative data provides a new insight into the different muscle mechanics of finger and wrist extensors. Graphical abstract By combining in vivo data (kinematics, dynamometry, electromyography, ultrasonography) during isometric force-varying contractions with musculoskeletal modelling, the force-length-activation relationships of both finger and wrist extensors were obtained. The results provided a new insight into the role of hand extensors in the generation and control of hand movements.
Collapse
Affiliation(s)
| | - Hugo Hauraix
- Aix-Marseille Univ, CNRS, ISM, Marseille, France
| | | | - Alexis Herbaut
- Department of Movement Sciences, Decathlon SportsLab, Villeneuve d'Ascq, France
| | - Eric Berton
- Aix-Marseille Univ, CNRS, ISM, Marseille, France
| | | |
Collapse
|
15
|
Rockenfeller R, Herold JL, Götz T. Parameter estimation and experimental design for Hill-type muscles: Impulses from optimization-based modeling. Math Biosci 2020; 327:108432. [PMID: 32710903 DOI: 10.1016/j.mbs.2020.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
The benefits of optimization-based modeling for parameter estimation of Hill-type muscle models are demonstrated. Therefore, we examined the model and data of Günther et al. (2007), who analyzed isometric, concentric, and quick-release contractions of a piglet calf muscle. We found that the isometric experiments are suitable for derivative-based parameter estimation while the others did not provide any additional value. During the estimation process, certain parameters had to be fixed. We give possible reasons and provide impulses for modelers. Subsequently, unnecessarily complex or deprecated model parts were exchanged and the new model was fitted to the data. In order to be able to provide a reliable estimation of the whole parameter set, we propose two isometric and two quick-release experiments, which are real-life feasible and together allow an identification of all parameters based on a local sensitivity analysis. These experiments can be used as qualitative guidelines for practitioners to reduce the experimental effort when estimating parameters for macroscopic muscle models.
Collapse
Affiliation(s)
- R Rockenfeller
- Mathematical Institute, University of Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz, Germany.
| | - J L Herold
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - T Götz
- Mathematical Institute, University of Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz, Germany
| |
Collapse
|
16
|
Rockenfeller R, Günther M, Stutzig N, Haeufle DFB, Siebert T, Schmitt S, Leichsenring K, Böl M, Götz T. Exhaustion of Skeletal Muscle Fibers Within Seconds: Incorporating Phosphate Kinetics Into a Hill-Type Model. Front Physiol 2020; 11:306. [PMID: 32431619 PMCID: PMC7214688 DOI: 10.3389/fphys.2020.00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 12/01/2022] Open
Abstract
Initiated by neural impulses and subsequent calcium release, skeletal muscle fibers contract (actively generate force) as a result of repetitive power strokes of acto-myosin cross-bridges. The energy required for performing these cross-bridge cycles is provided by the hydrolysis of adenosine triphosphate (ATP). The reaction products, adenosine diphosphate (ADP) and inorganic phosphate (P i ), are then used-among other reactants, such as creatine phosphate-to refuel the ATP energy storage. However, similar to yeasts that perish at the hands of their own waste, the hydrolysis reaction products diminish the chemical potential of ATP and thus inhibit the muscle's force generation as their concentration rises. We suggest to use the term "exhaustion" for force reduction (fatigue) that is caused by combined P i and ADP accumulation along with a possible reduction in ATP concentration. On the basis of bio-chemical kinetics, we present a model of muscle fiber exhaustion based on hydrolytic ATP-ADP-P i dynamics, which are assumed to be length- and calcium activity-dependent. Written in terms of differential-algebraic equations, the new sub-model allows to enhance existing Hill-type excitation-contraction models in a straightforward way. Measured time courses of force decay during isometric contractions of rabbit M. gastrocnemius and M. plantaris were employed for model verification, with the finding that our suggested model enhancement proved eminently promising. We discuss implications of our model approach for enhancing muscle models in general, as well as a few aspects regarding the significance of phosphate kinetics as one contributor to muscle fatigue.
Collapse
Affiliation(s)
| | - Michael Günther
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Stuttgart, Germany
- Friedrich-Schiller-University, Jena, Germany
| | - Norman Stutzig
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Daniel F. B. Haeufle
- Hertie-Institute for Clinical Brain Research and Center for Integrative Neuroscience, Eberhard-Karls-University, Tübingen, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Stuttgart, Germany
| | - Kay Leichsenring
- Institute of Solid Mechanics, Technical University Braunschweig, Braunschweig, Germany
| | - Markus Böl
- Institute of Solid Mechanics, Technical University Braunschweig, Braunschweig, Germany
| | - Thomas Götz
- Mathematical Institute, University of Koblenz-Landau, Koblenz, Germany
| |
Collapse
|
17
|
Mörl F, Günther M, Riede JM, Hammer M, Schmitt S. Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine. Biomech Model Mechanobiol 2020; 19:2015-2047. [DOI: 10.1007/s10237-020-01322-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/18/2020] [Indexed: 01/09/2023]
|
18
|
Harischandra N, Clare AJ, Zakotnik J, Blackburn LML, Matheson T, Dürr V. Evaluation of linear and non-linear activation dynamics models for insect muscle. PLoS Comput Biol 2019; 15:e1007437. [PMID: 31609992 PMCID: PMC6812852 DOI: 10.1371/journal.pcbi.1007437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/24/2019] [Accepted: 09/25/2019] [Indexed: 11/18/2022] Open
Abstract
In computational modelling of sensory-motor control, the dynamics of muscle contraction is an important determinant of movement timing and joint stiffness. This is particularly so in animals with many slow muscles, as is the case in insects-many of which are important models for sensory-motor control. A muscle model is generally used to transform motoneuronal input into muscle force. Although standard models exist for vertebrate muscle innervated by many motoneurons, there is no agreement on a parametric model for single motoneuron stimulation of invertebrate muscle. Although several different models have been proposed, they have never been evaluated using a common experimental data set. We evaluate five models for isometric force production of a well-studied model system: the locust hind leg tibial extensor muscle. The response of this muscle to motoneuron spikes is best modelled as a non-linear low-pass system. Linear first-order models can approximate isometric force time courses well at high spike rates, but they cannot account for appropriate force time courses at low spike rates. A linear third-order model performs better, but only non-linear models can account for frequency-dependent change of decay time and force potentiation at intermediate stimulus frequencies. Some of the differences among published models are due to differences among experimental data sets. We developed a comprehensive toolbox for modelling muscle activation dynamics, and optimised model parameters using one data set. The "Hatze-Zakotnik model" that emphasizes an accurate single-twitch time course and uses frequency-dependent modulation of the twitch for force potentiation performs best for the slow motoneuron. Frequency-dependent modulation of a single twitch works less well for the fast motoneuron. The non-linear "Wilson" model that optimises parameters to all data set parts simultaneously performs better here. Our open-access toolbox provides powerful tools for researchers to fit appropriate models to a range of insect muscles.
Collapse
Affiliation(s)
- Nalin Harischandra
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology—Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany
| | - Anthony J. Clare
- University of Leicester, Department of Neuroscience, Psychology and Behaviour, Leicester, United Kingdom
| | - Jure Zakotnik
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | - Tom Matheson
- University of Leicester, Department of Neuroscience, Psychology and Behaviour, Leicester, United Kingdom
| | - Volker Dürr
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology—Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|