1
|
Yazdanyar A, Cai CL, Aranda JV, Shrier E, Beharry KD. Comparison of Bevacizumab and Aflibercept for Suppression of Angiogenesis in Human Retinal Microvascular Endothelial Cells. Pharmaceuticals (Basel) 2023; 16:939. [PMID: 37513851 PMCID: PMC10383229 DOI: 10.3390/ph16070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 07/30/2023] Open
Abstract
Bevacizumab (Avastin) is a vascular endothelial growth factor (VEGF) inhibitor that is widely used for aggressive posterior retinopathy of prematurity (APROP). Its use is associated with multiple adverse effects. Aflibercept (Eylea) is a VEGFR-1 analogue that is approved for ocular use, but its efficacy for APROP is less studied. We tested the hypothesis that Eylea is as effective as Avastin for suppression of intermittent hypoxia (IH)-induced angiogenesis. Human retinal microvascular endothelial cells (HRECs) were treated with Avastin and low- or high-dose Eylea and exposed to normoxia, hyperoxia (50% O2), or neonatal IH for 24, 48, or 72 h. Cells were assessed for migration and tube formation capacities, as well as biomarkers of angiogenesis and oxidative stress. Both doses of Eylea suppressed migration and tube formation in all oxygen environments, although the effect was not as robust as Avastin. Furthermore, the lower dose of Eylea appeared to be more effective than the higher dose. Eylea induced soluble VEGFR-1 (sVEGFR-1) coincident with high IGF-I levels and decreased Notch/Jagged-1, demonstrating a functional association. Given the role of VEGFR-1 and Notch as guidance cues for vascular sprouting, these data suggest that Eylea may promote normal vascular patterning in a dose-dependent manner.
Collapse
Affiliation(s)
- Amirfarbod Yazdanyar
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Retina Group of New England, Waterford, CT 06385, USA
| | - Charles L Cai
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Jacob V Aranda
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Pediatrics/Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Eric Shrier
- Department of Pediatrics/Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Kay D Beharry
- Department of Ophthalmology, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Department of Pediatrics/Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
2
|
Lam C, Saluja S, Courcoubetis G, Yu D, Chung C, Courte J, Morsut L. Parameterized Computational Framework for the Description and Design of Genetic Circuits of Morphogenesis Based on Contact-Dependent Signaling and Changes in Cell-Cell Adhesion. ACS Synth Biol 2022; 11:1417-1439. [PMID: 35363477 PMCID: PMC10389258 DOI: 10.1021/acssynbio.0c00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synthetic development is a nascent field of research that uses the tools of synthetic biology to design genetic programs directing cellular patterning and morphogenesis in higher eukaryotic cells, such as mammalian cells. One specific example of such synthetic genetic programs was based on cell-cell contact-dependent signaling using synthetic Notch pathways and was shown to drive the formation of multilayered spheroids by modulating cell-cell adhesion via differential expression of cadherin family proteins in a mouse fibroblast cell line (L929). The design method for these genetic programs relied on trial and error, which limited the number of possible circuits and parameter ranges that could be explored. Here, we build a parameterized computational framework that, given a cell-cell communication network driving changes in cell adhesion and initial conditions as inputs, predicts developmental trajectories. We first built a general computational framework where contact-dependent cell-cell signaling networks and changes in cell-cell adhesion could be designed in a modular fashion. We then used a set of available in vitro results (that we call the "training set" in analogy to similar pipelines in the machine learning field) to parameterize the computational model with values for adhesion and signaling. We then show that this parameterized model can qualitatively predict experimental results from a "testing set" of available in vitro data that varied the genetic network in terms of adhesion combinations, initial number of cells, and even changes to the network architecture. Finally, this parameterized model is used to recommend novel network implementation for the formation of a four-layered structure that has not been reported previously. The framework that we develop here could function as a testing ground to identify the reachable space of morphologies that can be obtained by controlling contact-dependent cell-cell communications and adhesion with these molecular tools and in this cellular system. Additionally, we discuss how the model could be expanded to include other forms of communication or effectors for the computational design of the next generation of synthetic developmental trajectories.
Collapse
Affiliation(s)
- Calvin Lam
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - Sajeev Saluja
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - George Courcoubetis
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, United States
| | - Dottie Yu
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - Christian Chung
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - Josquin Courte
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089-1111, United States
| |
Collapse
|
3
|
Abdelhakim M, Dohi T, Yamato M, Takada H, Sakai A, Suzuki H, Ema M, Fukuhara S, Ogawa R. A New Model for Specific Visualization of Skin Graft Neoangiogenesis Using Flt1-tdsRed BAC Transgenic Mice. Plast Reconstr Surg 2021; 148:89-99. [PMID: 34014859 DOI: 10.1097/prs.0000000000008039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neovascularization plays a critical role in skin graft survival. Up to date, the lack of specificity to solely track the newly sprouting blood vessels has remained a limiting factor in skin graft transplantation models. Therefore, the authors developed a new model by using Flt1-tdsRed BAC transgenic mice. Flt1 is a vascular endothelial growth factor receptor expressed by sprouting endothelial cells mediating neoangiogenesis. The authors determined whether this model reliably visualizes neovascularization by quantifying tdsRed fluorescence in the graft over 14 days. METHODS Cross-transplantation of two full-thickness 1 × 1-cm dorsal skin grafts was performed between 6- to 8-week-old male Flt1 mice and KSN/Slc nude mice (n = 5). The percentage of graft area occupied by tdsRed fluorescence in the central and lateral areas of the graft on days 3, 5, 9, and 14 was determined using confocal-laser scanning microscopy. RESULTS Flt1+ endothelial cells migrating from the transgenic wound bed into the nude graft were first visible in the reticular dermis of the graft center on day 3 (0.5 ± 0.1; p < 0.05). Peak neovascularization was observed on day 9 in the lateral and central parts, increasing by 2- to 4-fold (4.6 ± 0.8 and 4.2 ± 0.9; p < 0.001). Notably, some limited neoangiogenesis was displayed within the Flt grafts on nude mice, particularly in the center. No neovascularization was observed from the wound margins. CONCLUSION The ability of the Flt1-tdsRed transgenic mouse model to efficiently identify the origin of the skin-graft vasculature and visualize graft neovascularization over time suggests its potential utility for developing techniques that promote graft neovascularization.
Collapse
Affiliation(s)
- Mohamed Abdelhakim
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Teruyuki Dohi
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Mizuho Yamato
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Hiroya Takada
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Atsushi Sakai
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Hidenori Suzuki
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Masatsugu Ema
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Shigetomo Fukuhara
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| | - Rei Ogawa
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, the Department of Pharmacology, and the Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School; and the Department of Stem Cells & Human Disease Models, Shiga University of Medical Science
| |
Collapse
|
4
|
Moreira-Soares M, Cunha SP, Bordin JR, Travasso RDM. Adhesion modulates cell morphology and migration within dense fibrous networks. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:314001. [PMID: 32378515 DOI: 10.1088/1361-648x/ab7c17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
One of the most fundamental abilities required for the sustainability of complex life forms is active cell migration, since it is essential in diverse processes from morphogenesis to leukocyte chemotaxis in immune response. The movement of a cell is the result of intricate mechanisms, that involve the coordination between mechanical forces, biochemical regulatory pathways and environmental cues. In particular, epithelial cancer cells have to employ mechanical strategies in order to migrate through the tissue's basement membrane and infiltrate the bloodstream during the invasion stage of metastasis. In this work we explore how mechanical interactions such as spatial restriction and adhesion affect migration of a self-propelled droplet in dense fibrous media. We have performed a systematic analysis using a phase-field model and we propose a novel approach to simulate cell migration with dissipative particle dynamics modelling. With this purpose we have measured in our simulation the cell's velocity and quantified its morphology as a function of the fibre density and of its adhesiveness to the matrix fibres. Furthermore, we have compared our results to a previousin vitromigration assay of fibrosarcoma cells in fibrous matrices. The results show good agreement between the two methodologies and experiments in the literature, which indicates that these minimalist descriptions are able to capture the main features of the system. Our results indicate that adhesiveness is critical for cell migration, by modulating cell morphology in crowded environments and by enhancing cell velocity. In addition, our analysis suggests that matrix metalloproteinases (MMPs) play an important role as adhesiveness modulators. We propose that new assays should be carried out to address the role of adhesion and the effect of different MMPs in cell migration under confined conditions.
Collapse
Affiliation(s)
| | - Susana P Cunha
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - José Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, Federal University of Pelotas, Rua dos Ipês, Capão do Leão, RS, 96050-500, Brazil
| | - Rui D M Travasso
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
5
|
Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model. PLoS Comput Biol 2020; 16:e1006919. [PMID: 31986145 PMCID: PMC7021322 DOI: 10.1371/journal.pcbi.1006919] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 02/14/2020] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
During angiogenesis, new blood vessels sprout and grow from existing ones. This process plays a crucial role in organ development and repair, in wound healing and in numerous pathological processes such as cancer progression or diabetes. Here, we present a mathematical model of early stage angiogenesis that permits exploration of the relative importance of mechanical, chemical and cellular cues. Endothelial cells proliferate and move over an extracellular matrix by following external gradients of Vessel Endothelial Growth Factor, adhesion and stiffness, which are incorporated to a Cellular Potts model with a finite element description of elasticity. The dynamics of Notch signaling involving Delta-4 and Jagged-1 ligands determines tip cell selection and vessel branching. Through their production rates, competing Jagged-Notch and Delta-Notch dynamics determine the influence of lateral inhibition and lateral induction on the selection of cellular phenotypes, branching of blood vessels, anastomosis (fusion of blood vessels) and angiogenesis velocity. Anastomosis may be favored or impeded depending on the mechanical configuration of strain vectors in the ECM near tip cells. Numerical simulations demonstrate that increasing Jagged production results in pathological vasculatures with thinner and more abundant vessels, which can be compensated by augmenting the production of Delta ligands. Angiogenesis is the process by which new blood vessels grow from existing ones. This process plays a crucial role in organ development, in wound healing and in numerous pathological processes such as cancer growth or in diabetes. Angiogenesis is a complex, multi-step and well regulated process where biochemistry and physics are intertwined. The process entails signaling in vessel cells being driven by both chemical and mechanical mechanisms that result in vascular cell movement, deformation and proliferation. Mathematical models have the ability to bring together these mechanisms in order to explore their relative relevance in vessel growth. Here, we present a mathematical model of early stage angiogenesis that is able to explore the role of biochemical signaling and tissue mechanics. We use this model to unravel the regulating role of Jagged, Notch and Delta dynamics in vascular cells. These membrane proteins have an important part in determining the leading cell in each neo-vascular sprout. Numerical simulations demonstrate that increasing Jagged production results in pathological vasculatures with thinner and more abundant vessels, which can be compensated by augmenting the production of Delta ligands.
Collapse
|
6
|
Méhes E, Biri-Kovács B, Isai DG, Gulyás M, Nyitray L, Czirók A. Matrigel patterning reflects multicellular contractility. PLoS Comput Biol 2019; 15:e1007431. [PMID: 31652274 PMCID: PMC6834294 DOI: 10.1371/journal.pcbi.1007431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 11/06/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023] Open
Abstract
Non-muscle myosin II (NMII)-induced multicellular contractility is essential for development, maintenance and remodeling of tissue morphologies. Dysregulation of the cytoskeleton can lead to birth defects or enable cancer progression. We demonstrate that the Matrigel patterning assay, widely used to characterize endothelial cells, is a highly sensitive tool to evaluate cell contractility within a soft extracellular matrix (ECM) environment. We propose a computational model to explore how cell-exerted contractile forces can tear up the cell-Matrigel composite material and gradually remodel it into a network structure. We identify measures that are characteristic for cellular contractility and can be obtained from image analysis of the recorded patterning process. The assay was calibrated by inhibition of NMII activity in A431 epithelial carcinoma cells either directly with blebbistatin or indirectly with Y27632 Rho kinase inhibitor. Using Matrigel patterning as a bioassay, we provide the first functional demonstration that overexpression of S100A4, a calcium-binding protein that is frequently overexpressed in metastatic tumors and inhibits NMIIA activity by inducing filament disassembly, effectively reduces cell contractility. Sensing and exerting forces is a fundamental aspect of tissue organization. We demonstrate that contractile cells form an intricate network structure when placed in a pliable culture environment, a phenomenon often associated with vascular networks and is being actively used to characterize endothelial cells in culture. We propose a computational model that operates with mechanical stresses, plastic deformation and material failure within the cell-extracellular matrix composite to explain the patterning process. In addition to re-interpret a decades-old tool of experimental cell biology, our work suggests a potentially high throughput computational assay to characterize cellular contractility within a soft ECM environment.
Collapse
Affiliation(s)
- Előd Méhes
- Department of Biological Physics, Eotvos Lorand University, Budapest, Hungary
| | - Beáta Biri-Kovács
- Department of Biochemistry, Eotvos Lorand University, Budapest, Hungary
| | - Dona G. Isai
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Márton Gulyás
- Department of Biological Physics, Eotvos Lorand University, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eotvos Lorand University, Budapest, Hungary
| | - András Czirók
- Department of Biological Physics, Eotvos Lorand University, Budapest, Hungary
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|