1
|
Bokes P, Singh A. Optimisation of gene expression noise for cellular persistence against lethal events. J Theor Biol 2025; 598:111996. [PMID: 39603338 DOI: 10.1016/j.jtbi.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
Bacterial cell persistence, crucial for survival under adverse conditions like antibiotic exposure, is intrinsically linked to stochastic fluctuations in gene expression. Certain genes, while inhibiting growth under normal circumstances, confer tolerance to antibiotics at elevated expression levels. The occurrence of antibiotic events lead to instantaneous cellular responses with varied survival probabilities correlated with gene expression levels. Notably, cells with lower protein concentrations face higher mortality rates. This study aims to elucidate an optimal strategy for protein expression conducive to cellular survival. Through comprehensive mathematical analysis, we determine the optimal burst size and frequency that maximise cell proliferation. Furthermore, we explore how the optimal expression distribution changes as the cost of protein expression to growth escalates. Our model reveals a hysteresis phenomenon, characterised by discontinuous transitions between deterministic and stochastic optima. Intriguingly, stochastic optima possess a noise floor, representing the minimal level of fluctuations essential for optimal cellular resilience.
Collapse
Affiliation(s)
- Pavol Bokes
- Department of Applied Mathematics and Statistics, Comenius University, Bratislava 84248, Slovakia.
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
2
|
Chowdhury D, Wang C, Lu A, Zhu H. Cis-Regulatory Logic Produces Gene-Expression Noise Describing Phenotypic Heterogeneity in Bacteria. Front Genet 2021; 12:698910. [PMID: 34650591 PMCID: PMC8506120 DOI: 10.3389/fgene.2021.698910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 12/04/2022] Open
Abstract
Gene transcriptional process is random. It occurs in bursts and follows single-molecular kinetics. Intermittent bursts are measured based on their frequency and size. They influence temporal fluctuations in the abundance of total mRNA and proteins by generating distinct transcriptional variations referred to as “noise”. Noisy expression induces uncertainty because the association between transcriptional variation and the extent of gene expression fluctuation is ambiguous. The promoter architecture and remote interference of different cis-regulatory elements are the crucial determinants of noise, which is reflected in phenotypic heterogeneity. An alternative perspective considers that cellular parameters dictating genome-wide transcriptional kinetics follow a universal pattern. Research on noise and systematic perturbations of promoter sequences reinforces that both gene-specific and genome-wide regulation occur across species ranging from bacteria and yeast to animal cells. Thus, deciphering gene-expression noise is essential across different genomics applications. Amidst the mounting conflict, it is imperative to reconsider the scope, progression, and rational construction of diversified viewpoints underlying the origin of the noise. Here, we have established an indication connecting noise, gene expression variations, and bacterial phenotypic variability. This review will enhance the understanding of gene-expression noise in various scientific contexts and applications.
Collapse
Affiliation(s)
- Debajyoti Chowdhury
- HKBU Institute for Research and Continuing Education, Shenzhen, China.,Computational Medicine Lab, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chao Wang
- HKBU Institute for Research and Continuing Education, Shenzhen, China.,Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Aiping Lu
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hailong Zhu
- HKBU Institute for Research and Continuing Education, Shenzhen, China.,Computational Medicine Lab, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|