1
|
Chae SJ, Kim DW, Igoshin OA, Lee S, Kim JK. Beyond microtubules: The cellular environment at the endoplasmic reticulum attracts proteins to the nucleus, enabling nuclear transport. iScience 2024; 27:109235. [PMID: 38439967 PMCID: PMC10909898 DOI: 10.1016/j.isci.2024.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/03/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
All proteins are translated in the cytoplasm, yet many, including transcription factors, play vital roles in the nucleus. While previous research has concentrated on molecular motors for the transport of these proteins to the nucleus, recent observations reveal perinuclear accumulation even in the absence of an energy source, hinting at alternative mechanisms. Here, we propose that structural properties of the cellular environment, specifically the endoplasmic reticulum (ER), can promote molecular transport to the perinucleus without requiring additional energy expenditure. Specifically, physical interaction between proteins and the ER impedes their diffusion and leads to their accumulation near the nucleus. This result explains why larger proteins, more frequently interacting with the ER membrane, tend to accumulate at the perinucleus. Interestingly, such diffusion in a heterogeneous environment follows Chapman's law rather than the popular Fick's law. Our findings suggest a novel protein transport mechanism arising solely from characteristics of the intracellular environment.
Collapse
Affiliation(s)
- Seok Joo Chae
- Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Dae Wook Kim
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Seunggyu Lee
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Division of Applied Mathematical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
| |
Collapse
|
2
|
Simpson MJ, Baker RE, Buenzli PR, Nicholson R, Maclaren OJ. Reliable and efficient parameter estimation using approximate continuum limit descriptions of stochastic models. J Theor Biol 2022; 549:111201. [PMID: 35752285 DOI: 10.1016/j.jtbi.2022.111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
Stochastic individual-based mathematical models are attractive for modelling biological phenomena because they naturally capture the stochasticity and variability that is often evident in biological data. Such models also allow us to track the motion of individuals within the population of interest. Unfortunately, capturing this microscopic detail means that simulation and parameter inference can become computationally expensive. One approach for overcoming this computational limitation is to coarse-grain the stochastic model to provide an approximate continuum model that can be solved using far less computational effort. However, coarse-grained continuum models can be biased or inaccurate, particularly for certain parameter regimes. In this work, we combine stochastic and continuum mathematical models in the context of lattice-based models of two-dimensional cell biology experiments by demonstrating how to simulate two commonly used experiments: cell proliferation assays and barrier assays. Our approach involves building a simple statistical model of the discrepancy between the expensive stochastic model and the associated computationally inexpensive coarse-grained continuum model. We form this statistical model based on a limited number of expensive stochastic model evaluations at design points sampled from a user-chosen distribution, corresponding to a computer experiment design problem. With straightforward design point selection schemes, we show that using the statistical model of the discrepancy in tandem with the computationally inexpensive continuum model allows us to carry out prediction and inference while correcting for biases and inaccuracies due to the continuum approximation. We demonstrate this approach by simulating a proliferation assay, where the continuum limit model is the well-known logistic ordinary differential equation, as well as a barrier assay where the continuum limit model is closely related to the well-known Fisher-KPP partial differential equation. We construct an approximate likelihood function for parameter inference, both with and without discrepancy correction terms. Using maximum likelihood estimation, we provide point estimates of the unknown parameters, and use the profile likelihood to characterise the uncertainty in these estimates and form approximate confidence intervals. For the range of inference problems considered, working with the continuum limit model alone leads to biased parameter estimation and confidence intervals with poor coverage. In contrast, incorporating correction terms arising from the statistical model of the model discrepancy allows us to recover the parameters accurately with minimal computational overhead. The main tradeoff is that the associated confidence intervals are typically broader, reflecting the additional uncertainty introduced by the approximation process. All algorithms required to replicate the results in this work are written in the open source Julia language and are available at GitHub.
Collapse
Affiliation(s)
- Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | - Ruth E Baker
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Pascal R Buenzli
- School of Mathematical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Ruanui Nicholson
- Department of Engineering Science, University of Auckland, Auckland, 1142, New Zealand
| | - Oliver J Maclaren
- Department of Engineering Science, University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
3
|
Mathematical Modelling of p53 Signalling during DNA Damage Response: A Survey. Int J Mol Sci 2021; 22:ijms221910590. [PMID: 34638930 PMCID: PMC8508851 DOI: 10.3390/ijms221910590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023] Open
Abstract
No gene has garnered more interest than p53 since its discovery over 40 years ago. In the last two decades, thanks to seminal work from Uri Alon and Ghalit Lahav, p53 has defined a truly synergistic topic in the field of mathematical biology, with a rich body of research connecting mathematic endeavour with experimental design and data. In this review we survey and distill the extensive literature of mathematical models of p53. Specifically, we focus on models which seek to reproduce the oscillatory dynamics of p53 in response to DNA damage. We review the standard modelling approaches used in the field categorising them into three types: time delay models, spatial models and coupled negative-positive feedback models, providing sample model equations and simulation results which show clear oscillatory dynamics. We discuss the interplay between mathematics and biology and show how one informs the other; the deep connections between the two disciplines has helped to develop our understanding of this complex gene and paint a picture of its dynamical response. Although yet more is to be elucidated, we offer the current state-of-the-art understanding of p53 response to DNA damage.
Collapse
|
4
|
Milkevych V, Karaman E, Sahana G, Janss L, Cai Z, Lund MS. MeSCoT: The tool for quantitative trait simulation through the mechanistic modelling of genes' regulatory interactions. G3-GENES GENOMES GENETICS 2021; 11:6255744. [PMID: 33905502 PMCID: PMC8496224 DOI: 10.1093/g3journal/jkab133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022]
Abstract
This work represents a novel mechanistic approach to simulate and study genomic networks with accompanying regulatory interactions and complex mechanisms of quantitative trait formation. The approach implemented in MeSCoT software is conceptually based on the omnigenic genetic model of quantitative (complex) trait, and closely imitates the basic in vivo mechanisms of quantitative trait realization. The software provides a framework to study molecular mechanisms of gene-by-gene and gene-by-environment interactions underlying quantitative trait’s realization and allows detailed mechanistic studies of impact of genetic and phenotypic variance on gene regulation. MeSCoT performs a detailed simulation of genes’ regulatory interactions for variable genomic architectures and generates complete set of transcriptional and translational data together with simulated quantitative trait values. Such data provide opportunities to study, for example, verification of novel statistical methods aiming to integrate intermediate phenotypes together with final phenotype in quantitative genetic analyses or to investigate novel approaches for exploiting gene-by-gene and gene-by-environment interactions.
Collapse
Affiliation(s)
- Viktor Milkevych
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Emre Karaman
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Luc Janss
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Zexi Cai
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| |
Collapse
|