1
|
Wang Z, Chen Q, Zhang J, Xu H, Miao L, Zhang T, Liu D, Zhu Q, Yan H, Yan D. Climate warming promotes collateral antibiotic resistance development in cyanobacteria. WATER RESEARCH 2024; 256:121642. [PMID: 38657307 DOI: 10.1016/j.watres.2024.121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Both cyanobacterial blooms and antibiotic resistance have aggravated worldwide and posed a great threat to public health in recent years. As a significant source and reservoir of water environmental resistome, cyanobacteria exhibit confusing discrepancy between their reduced susceptibility and their chronic exposure to antibiotic mixtures at sub-inhibitory concentrations. How the increasing temperature affects the adaptive evolution of cyanobacteria-associated antibiotic resistance in response to low-level antibiotic combinations under climate change remains unclear. Here we profiled the antibiotic interaction and collateral susceptibility networks among 33 commonly detected antibiotics in 600 cyanobacterial strains isolated from 50 sites across four eutrophicated lakes in China. Cyanobacteria-associated antibiotic resistance level was found positively correlated to antibiotic heterogeneity across all sites. Among 528 antibiotic combinations, antagonism was observed for 62 % interactions and highly conserved within cyanobacterial species. Collateral resistance was detected in 78.5 % of pairwise antibiotic interaction, leading to a widened or shifted upwards mutant selection window for increased opportunity of acquiring second-step mutations. We quantified the interactive promoting effect of collateral resistance and increasing temperature on the evolution of both phenotypic and genotypic cyanobacteria-associated resistance under chronic exposure to environmental level of antibiotic combinations. With temperature increasing from 16 °C to 36 °C, the evolvability index and genotypic resistance level increased by 1.25 - 2.5 folds and 3 - 295 folds in the collateral-resistance-informed lineages, respectively. Emergence of resistance mutation pioneered by tolerance, which was jointly driven by mutation rate and persister fraction, was found to be accelerated by increased temperature and antibiotic switching rate. Our findings provided mechanic insights into the boosting effect of climate warming on the emergence and development of cyanobacteria-associated resistance against collateral antibiotic phenotypes.
Collapse
Affiliation(s)
- Zhiyuan Wang
- National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Qiuwen Chen
- National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Jianyun Zhang
- National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Huacheng Xu
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lingzhan Miao
- College of Environment, Hohai University, Nanjing 210098, China
| | - Tao Zhang
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Dongsheng Liu
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Qiuheng Zhu
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Hanlu Yan
- National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Dandan Yan
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| |
Collapse
|
2
|
Piskovsky V, Oliveira NM. Bacterial motility can govern the dynamics of antibiotic resistance evolution. Nat Commun 2023; 14:5584. [PMID: 37696800 PMCID: PMC10495427 DOI: 10.1038/s41467-023-41196-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
Spatial heterogeneity in antibiotic concentrations is thought to accelerate the evolution of antibiotic resistance, but current theory and experiments have overlooked the effect of cell motility on bacterial adaptation. Here, we study bacterial evolution in antibiotic landscapes with a quantitative model where bacteria evolve under the stochastic processes of proliferation, death, mutation and migration. Numerical and analytical results show that cell motility can both accelerate and decelerate bacterial adaptation by affecting the degree of genotypic mixing and ecological competition. Moreover, we find that for sufficiently high rates, cell motility can limit bacterial survival, and we derive conditions for all these regimes. Similar patterns are observed in more complex scenarios, namely where bacteria can bias their motion in chemical gradients (chemotaxis) or switch between motility phenotypes either stochastically or in a density-dependent manner. Overall, our work reveals limits to bacterial adaptation in antibiotic landscapes that are set by cell motility.
Collapse
Affiliation(s)
- Vit Piskovsky
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| | - Nuno M Oliveira
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK.
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
3
|
The role of chemotaxis and efflux pumps on nitrate reduction in the toxic regions of a ciprofloxacin concentration gradient. THE ISME JOURNAL 2021; 15:2920-2932. [PMID: 33927341 PMCID: PMC8443623 DOI: 10.1038/s41396-021-00975-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
Spatial concentration gradients of antibiotics are prevalent in the natural environment. Yet, the microbial response in these heterogeneous systems remains poorly understood. We used a microfluidic reactor to create an artificial microscopic ecosystem that generates diffusive gradients of solutes across interconnected microenvironments. With this reactor, we showed that chemotaxis toward a soluble electron acceptor (nitrate) allowed Shewanella oneidensis MR-1 to inhabit and sustain metabolic activity in highly toxic regions of the antibiotic ciprofloxacin (>80× minimum inhibitory concentration, MIC). Acquired antibiotic resistance was not observed for cells extracted from the reactor, so we explored the role of transient adaptive resistance by probing multidrug resistance (MDR) efflux pumps, ancient elements that are important for bacterial physiology and virulence. Accordingly, we constructed an efflux pump deficient mutant (∆mexF) and used resistance-nodulation-division (RND) efflux pump inhibitors (EPIs). While batch results showed the importance of RND efflux pumps for microbial survival, microfluidic studies indicated that these pumps were not necessary for survival in antibiotic gradients. Our work contributes to an emerging body of knowledge deciphering the effects of antibiotic spatial heterogeneity on microorganisms and highlights differences of microbial response in these systems versus well-mixed batch conditions.
Collapse
|
4
|
Gudda FO, Waigi MG, Odinga ES, Yang B, Carter L, Gao Y. Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114752. [PMID: 32417582 DOI: 10.1016/j.envpol.2020.114752] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Wastewater reuse in food crop irrigation has led to agroecosystem pollution concerns and human health risks. However, there is limited attention on the relationship of sub-lethal antibiotic levels in vegetables and resistance selection. Most risk assessment studies show non-significant toxicity, but overlook the link between antibiotics in crops and propagation of gut microbiome resistance selection. The review highlights the risk of antibiotics in treated water used for irrigation, uptake, and accumulation in edible vegetable parts. Moreover, it elucidates the risks to the adaptive resistance selection of the gut microbiome from sub-lethal antibiotic levels, as a result of dietary contaminated vegetables. Experiments have reported that bacterial resistance selection is possible at concentrations that are several hundred-folds lower than lethal effect levels on susceptible cells. Consequently, mutants selected at low antibiotic levels, such as those from vegetables, are fitter and more resistant compared to those selected at high concentrations. Necessary standardization, such as the development of minimum acceptable antibiotic limits allowable in food crop irrigation water, with a focus on minimum selection concentration, and not only toxicity, has been proposed. Wastewater irrigation offers environmental benefits and can contribute to food security, but it has non-addressed risks. Research gaps, future perspectives, and frameworks of mitigating the potential risks are discussed.
Collapse
Affiliation(s)
- Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Environment and Resource Development, Department of Environmental Sciences, Egerton University, Box 536, Egerton, 20115, Kenya
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Laura Carter
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|