1
|
Zheng Z, Li Y, Zhang M, Liu Y, Fu M, Gong S, Hu Q. Human Norovirus NTPase Antagonizes Interferon-β Production by Interacting With IkB Kinase ε. Front Microbiol 2021; 12:687933. [PMID: 34335514 PMCID: PMC8319745 DOI: 10.3389/fmicb.2021.687933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022] Open
Abstract
Human norovirus (HuNoV) is the leading cause of epidemic acute gastroenteritis worldwide. Type I interferons (IFN)-α/β are highly potent cytokines that are initially identified for their essential roles in antiviral defense. It was reported that HuNoV infection did not induce IFN-β expression but was controlled in the presence of IFN-β in human intestinal enteroids and a gnotobiotic pig model, suggesting that HuNoV has likely developed evasion countermeasures. In this study, we found that a cDNA clone of GII.4 HuNoV, the predominantly circulating genotype worldwide, inhibits the production of IFN-β and identified the viral NTPase as a key component responsible for such inhibition. HuNoV NTPase not only inhibits the activity of IFN-β promoter but also the mRNA and protein production of IFN-β. Additional studies indicate that NTPase inhibits the phosphorylation and nuclear translocation of interferon-regulatory factor-3 (IRF-3), leading to the suppression of IFN-β promoter activation. Mechanistically, NTPase interacts with IkB kinase ε (IKKε), an important factor for IRF-3 phosphorylation, and such interaction blocks the association of IKKε with unanchored K48-linked polyubiquitin chains, resulting in the inhibition of IKKε phosphorylation. Further studies demonstrated that the 1-179 aa domain of NTPase which interacts with IKKε is critical for the suppression of IFN-β production. Our findings highlight the role of HuNoV NTPase in the inhibition of IFN-β production, providing insights into a novel mechanism underlying how HuNoV evades the host innate immunity.
Collapse
Affiliation(s)
- Zifeng Zheng
- The Joint Laboratory of Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou, China.,The Joint Laboratory of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Mudan Zhang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yalan Liu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Fu
- The Joint Laboratory of Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou, China.,The Joint Laboratory of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| |
Collapse
|
2
|
Modeling the complete kinetics of coxsackievirus B3 reveals human determinants of host-cell feedback. Cell Syst 2021; 12:304-323.e13. [PMID: 33740397 DOI: 10.1016/j.cels.2021.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/13/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Complete kinetic models are pervasive in chemistry but lacking in biological systems. We encoded the complete kinetics of infection for coxsackievirus B3 (CVB3), a compact and fast-acting RNA virus. The model consists of separable, detailed modules describing viral binding-delivery, translation-replication, and encapsidation. Specific module activities are dampened by the type I interferon response to viral double-stranded RNAs (dsRNAs), which is itself disrupted by viral proteinases. The experimentally validated kinetics uncovered that cleavability of the dsRNA transducer mitochondrial antiviral signaling protein (MAVS) becomes a stronger determinant of viral outcomes when cells receive supplemental interferon after infection. Cleavability is naturally altered in humans by a common MAVS polymorphism, which removes a proteinase-targeted site but paradoxically elevates CVB3 infectivity. These observations are reconciled with a simple nonlinear model of MAVS regulation. Modeling complete kinetics is an attainable goal for small, rapidly infecting viruses and perhaps viral pathogens more broadly. A record of this paper's transparent peer review process is included in the Supplemental information.
Collapse
|