1
|
Berteau JPP. Systematic narrative review of modalities in physiotherapy for managing pain in hip and knee osteoarthritis: A review. Medicine (Baltimore) 2024; 103:e38225. [PMID: 39331867 PMCID: PMC11441874 DOI: 10.1097/md.0000000000038225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Osteoarthritis (OA) affects 528 million individuals globally, predominantly in knee and hip joints, with a notable impact on females aged over 55, resulting in a substantial economic burden. However, the efficacy of modalities used in physiotherapy to manage OA pain for reducing the need for joint replacement remains an open question, and guidelines differ. Our systematic narrative review, drawing from reputable databases (e.g., PubMed, Cochrane, and CINAHL) with specific Mesh terms investigated evidence from 23 Randomized Controlled Trials (that included a control or a sham group in 30 different protocols) using therapeutic modalities like ultrasound, diathermy, and electrical stimulation for knee and hip OA pain, involving a total of 1055 subjects. We investigated the attainment of minimal clinically important differences in pain reduction, operationalized through a 20% decrement in the Western Ontario and McMaster University Arthritis Index or Visual Analog Scale (VAS) score. Our results indicated that 15 protocols out of 30 reach that level, but there were no statistical differences among modalities. Half of the protocol presented in the literature reached clinical efficiency but studies on hip remains scarce. We recommend a comprehensive, sequential, and multimodal intervention plan for individuals with joint OA with initial transcutaneous electrical nerve stimulation and progressing to a 2-week protocol of continuous ultrasound, potentially combined with deep microwave diathermy. Long-term intervention involves the use of pulsed electrical stimulation. For hip OA, a cautious approach and discussions with healthcare providers about potential benefits of spinal cord nerve stimulation.
Collapse
Affiliation(s)
- Jean-Philippe Paul Berteau
- Department of Physical Therapy, City University of New York-College of Staten Island, New York City, NY
- New York Center for Biomedical Engineering, City University of New York-City College of New York, New York City, NY
- Nanoscience Initiative, Advanced Science Research Center, City University of New York, New York City, NY
| |
Collapse
|
2
|
Gargalionis AN, Adamopoulos C, Vottis CT, Papavassiliou AG, Basdra EK. Runx2 and Polycystins in Bone Mechanotransduction: Challenges for Therapeutic Opportunities. Int J Mol Sci 2024; 25:5291. [PMID: 38791330 PMCID: PMC11121608 DOI: 10.3390/ijms25105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Bone mechanotransduction is a critical process during skeletal development in embryogenesis and organogenesis. At the same time, the type and level of mechanical loading regulates bone remodeling throughout the adult life. The aberrant mechanosensing of bone cells has been implicated in the development and progression of bone loss disorders, but also in the bone-specific aspect of other clinical entities, such as the tumorigenesis of solid organs. Novel treatment options have come into sight that exploit the mechanosensitivity of osteoblasts, osteocytes, and chondrocytes to achieve efficient bone regeneration. In this regard, runt-related transcription factor 2 (Runx2) has emerged as a chief skeletal-specific molecule of differentiation, which is prominent to induction by mechanical stimuli. Polycystins represent a family of mechanosensitive proteins that interact with Runx2 in mechano-induced signaling cascades and foster the regulation of alternative effectors of mechanotransuction. In the present narrative review, we employed a PubMed search to extract the literature concerning Runx2, polycystins, and their association from 2000 to March 2024. The keywords stated below were used for the article search. We discuss recent advances regarding the implication of Runx2 and polycystins in bone remodeling and regeneration and elaborate on the targeting strategies that may potentially be applied for the treatment of patients with bone loss diseases.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, 12462 Athens, Greece;
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christos T. Vottis
- First Department of Orthopedics, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, 12462 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| |
Collapse
|
3
|
Griesbach JK, Schulte FA, Schädli GN, Rubert M, Müller R. Mechanoregulation analysis of bone formation in tissue engineered constructs requires a volumetric method using time-lapsed micro-computed tomography. Acta Biomater 2024; 179:149-163. [PMID: 38492908 DOI: 10.1016/j.actbio.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/09/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Bone can adapt its microstructure to mechanical loads through mechanoregulation of the (re)modeling process. This process has been investigated in vivo using time-lapsed micro-computed tomography (micro-CT) and micro-finite element (FE) analysis using surface-based methods, which are highly influenced by surface curvature. Consequently, when trying to investigate mechanoregulation in tissue engineered bone constructs, their concave surfaces make the detection of mechanoregulation impossible when using surface-based methods. In this study, we aimed at developing and applying a volumetric method to non-invasively quantify mechanoregulation of bone formation in tissue engineered bone constructs using micro-CT images and FE analysis. We first investigated hydroxyapatite scaffolds seeded with human mesenchymal stem cells that were incubated over 8 weeks with one mechanically loaded and one control group. Higher mechanoregulation of bone formation was measured in loaded samples with an area under the curve for the receiver operating curve (AUCformation) of 0.633-0.637 compared to non-loaded controls (AUCformation: 0.592-0.604) during culture in osteogenic medium (p < 0.05). Furthermore, we applied the method to an in vivo mouse study investigating the effect of loading frequencies on bone adaptation. The volumetric method detected differences in mechanoregulation of bone formation between loading conditions (p < 0.05). Mechanoregulation in bone formation was more pronounced (AUCformation: 0.609-0.642) compared to the surface-based method (AUCformation: 0.565-0.569, p < 0.05). Our results show that mechanoregulation of formation in bone tissue engineered constructs takes place and its extent can be quantified with a volumetric mechanoregulation method using time-lapsed micro-CT and FE analysis. STATEMENT OF SIGNIFICANCE: Many efforts have been directed towards optimizing bone scaffolds for tissue growth. However, the impact of the scaffolds mechanical environment on bone growth is still poorly understood, requiring accurate assessment of its mechanoregulation. Existing surface-based methods were unable to detect mechanoregulation in tissue engineered constructs, due to predominantly concave surfaces in scaffolds. We present a volumetric approach to enable the precise and non-invasive quantification and analysis of mechanoregulation in bone tissue engineered constructs by leveraging time-lapsed micro-CT imaging, image registration, and finite element analysis. The implications of this research extend to diverse experimental setups, encompassing culture conditions, and material optimization, and investigations into bone diseases, enabling a significant stride towards comprehensive advancements in bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Julia K Griesbach
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Friederike A Schulte
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Gian Nutal Schädli
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Marina Rubert
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Gloriastrasse 37/39, 8092 Zürich, Switzerland.
| |
Collapse
|
4
|
Pereira R, Maia P, Rios-Santos JV, Herrero-Climent M, Rios-Carrasco B, Aparicio C, Gil J. Influence of Titanium Surface Residual Stresses on Osteoblastic Response and Bacteria Colonization. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1626. [PMID: 38612139 PMCID: PMC11012676 DOI: 10.3390/ma17071626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Grit basting is the most common process applied to titanium dental implants to give them a roughness that favors bone colonization. There are numerous studies on the influence of roughness on osseointegration, but the influence of the compressive residual stress associated with this treatment on biological behavior has not been determined. For this purpose, four types of surfaces have been studied using 60 titanium discs: smooth, smooth with residual stress, rough without stress, and rough with residual stress. Roughness was studied by optic interferometry; wettability and surface energy (polar and dispersive components) by contact angle equipment using three solvents; and residual stresses by Bragg-Bentano X-ray diffraction. The adhesion and alkaline phosphatase (ALP) levels on the different surfaces were studied using Saos-2 osteoblastic cultures. The bacterial strains Streptococcus sanguinis and Lactobacillus salivarius were cultured on different surfaces, determining the adhesion. The results showed that residual stresses lead to increased hydrophilicity on the surfaces, as well as an increase in surface energy, especially on the polar component. From the culture results, higher adhesion and higher ALP levels were observed in the discs with residual stresses when compared between smooth and roughened discs. It was also found that roughness was the property that mostly influenced osteoblasts' response. Bacteria colonize rough surfaces better than smooth surfaces, but no changes are observed due to residual surface tension.
Collapse
Affiliation(s)
- Rita Pereira
- Facultad de Odontología, Universidad de Sevilla, Calle Avicena s/n, 41009 Sevilla, Spain; (R.P.); (J.V.R.-S.); (B.R.-C.)
| | - Paulo Maia
- Facultade Ciências da Saúde, Universidad Europeia de Lisboa,1500-210 Lisboa, Portugal;
| | - Jose Vicente Rios-Santos
- Facultad de Odontología, Universidad de Sevilla, Calle Avicena s/n, 41009 Sevilla, Spain; (R.P.); (J.V.R.-S.); (B.R.-C.)
| | | | - Blanca Rios-Carrasco
- Facultad de Odontología, Universidad de Sevilla, Calle Avicena s/n, 41009 Sevilla, Spain; (R.P.); (J.V.R.-S.); (B.R.-C.)
| | - Conrado Aparicio
- Facultad de Odontología, Universitat Internacional de Catalunya, c/ Josep Trueta s/n, 08195 Sant Cugat del Vallés, Spain;
| | - Javier Gil
- Bioengineering Institute of Technology, Universidad Internacional de Catalunya, c/ Josep Trueta s/n, 08195 Sant Cugat del Vallés, Spain
| |
Collapse
|
5
|
Lee HH, Choi EY, Jun HS, Kim YY. Osteoclast and Sclerostin Expression in Osteocytes in the Femoral Head with Risedronate Therapy in Patients with Hip Fractures: A Retrospective Comparative Study. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58111566. [PMID: 36363523 PMCID: PMC9695260 DOI: 10.3390/medicina58111566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Background and Objectives: The majority of research on the effects of osteoporosis drugs has measured the bone mineral density (BMD) of the spine and femur through dual-energy X-ray absorptiometry (DEXA) and compared and analyzed the effects of the drugs through changes in the BMD values. This study aims to compare osteoclast and sclerostin expression in osteocytes after risedronate therapy by obtaining femoral heads from patients with hip fractures. Materials and Methods: We obtained the femoral heads of 10 female patients (age: ≥65 years) who received risedronate therapy for at least 1 year through hip arthroplasty during 2019−2021 (risedronate group). Meanwhile, 10 patients who had never received osteoporosis treatment were selected as controls using propensity scores with age, body mass index, and bone density as covariates (control group). While the osteoclast count was evaluated using tartrate-resistant acid phosphatase (TRAP) staining, the sclerostin expression in osteocytes was assessed using immunohistochemistry. Moreover, Western blotting and polymerase chain reaction (PCR) were performed for receptor activation of nuclear factor kappa-Β ligand (RANKL), RANK, osteoprotegerin (OPG), sclerostin, and bone morphogenetic protein-2 (BMP2). Results: TRAP staining revealed significantly more TRAP-positive cells in the control group (131.75 ± 27.16/mm2) than in the risedronate group (28.00 ± 8.12/mm2). Moreover, sclerostin-positive osteocytes were expressed more in the control group (364.12 ± 28.12/mm2) than in the risedronate group (106.93 ± 12.85/mm2). Western blotting revealed that the expressions of RANKL, RANK, sclerostin, and BMP2 were higher in the control group than in the risedronate group (p < 0.05). Furthermore, RANK, sclerostin, and OPG protein levels were higher in the control group than in the risedronate group. Conclusions: In this study, the risedronate group demonstrated lower osteoclast activity and sclerostin expression in osteocytes in the femoral head than the control group.
Collapse
|
6
|
Tozzi R, Masi D, Cipriani F, Contini S, Gangitano E, Spoltore ME, Barchetta I, Basciani S, Watanabe M, Baldini E, Ulisse S, Lubrano C, Gnessi L, Mariani S. Circulating SIRT1 and Sclerostin Correlates with Bone Status in Young Women with Different Degrees of Adiposity. Nutrients 2022; 14:nu14050983. [PMID: 35267956 PMCID: PMC8912833 DOI: 10.3390/nu14050983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022] Open
Abstract
Sirtuin1 (SIRT1) and sclerostin play important roles in adipose tissue and bone metabolism. We evaluated the circulating SIRT1 and sclerostin relationship with mass and quality of bone while considering the degree of adiposity. Sixty-six premenopausal women (16 underweight, 25 normal weight and 25 with obesity), aged <50 years, were enrolled. Plasma SIRT1, sclerostin and DXA body composition (total fat mass (FM), abdominal visceral adipose tissue, lean mass, trabecular bone score (TBS) and lumbar spine and femoral neck (FN) bone mineral density (BMD)) were assessed. The patients with obesity showed the lowest SIRT1 and TBS values and the highest sclerostin concentrations; BMD increased with FM and BMI and had an inverse association with SIRT1. Sclerostin was negatively correlated with SIRT1 (ρ = −0.37, p = 0.002). When spine BMD, FN BMD and TBS were standardized for BMI, a positive correlation with SIRT1 and a negative correlation with sclerostin were seen (p < 0.005). In the regression analysis, sclerostin was the best independent, negative predictor for BMD and TBS, while SIRT1 directly predicted TBS (p < 0.05). In conclusion, blood measurement of SIRT1 and sclerostin could represent a snapshot of the bone status that, taking into account the degree of adiposity, may reduce the interference of confounding factors in the interpretation of bone health parameters.
Collapse
Affiliation(s)
- Rossella Tozzi
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Davide Masi
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Fiammetta Cipriani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Savina Contini
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Elena Gangitano
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Maria Elena Spoltore
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Ilaria Barchetta
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Enke Baldini
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (E.B.); (S.U.)
| | - Salvatore Ulisse
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (E.B.); (S.U.)
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, 00161 Rome, Italy; (D.M.); (F.C.); (S.C.); (E.G.); (M.E.S.); (I.B.); (S.B.); (M.W.); (C.L.); (L.G.)
- Correspondence: ; Tel.: +39-06499-70721; Fax: +39-06446-1450
| |
Collapse
|