1
|
Reynolds GK, Klimevski E, Saunders NR, Teenakoon GS, Harrison SJ, Dowling M, Anderson MA, Thursky K, Slavin MA, Teh BW. Seropositivity against vaccine preventable infections in the early post chimeric antigen receptor T-cell period: Preservation of vaccine-associated antibodies between 0 and 6 months. Br J Haematol 2024. [PMID: 39462188 DOI: 10.1111/bjh.19807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024]
Affiliation(s)
- Gemma K Reynolds
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Melbourne, Victoria, Australia
| | - Emily Klimevski
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Natalie R Saunders
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Gayani S Teenakoon
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simon J Harrison
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Mark Dowling
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Mary Ann Anderson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Division of Blood Cells and Blood Cancer, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Karin Thursky
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Angelidakis G, Chemaly RF, Sahasrabhojane PV, Morado-Aramburo O, Jiang Y, Bhatti MM, Shpall E, Hosing C, Jain P, Mahadeo KM, Khawaja F, Elhajj P, Wargo JA, Jenq RR, Ajami NJ, Kebriaei P, Ariza-Heredia EJ. Humoral Immunity and Antibody Responses against Diphtheria, Tetanus, and Pneumococcus after Immune Effector Cell Therapies: A Prospective Study. Vaccines (Basel) 2024; 12:1070. [PMID: 39340100 PMCID: PMC11436035 DOI: 10.3390/vaccines12091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Patients undergoing immune effector cell therapy (IECT) are at high risk for infections. We assessed seropositivity against pneumococcus, tetanus, and diphtheria in patients before and after IECT and the patients' response to vaccination. We enrolled patients who underwent IECT from January 2020 to March 2022. Antibody levels for diphtheria, tetanus, and pneumococcus were measured before IECT, at 1 month, and 3-6 months after. Eligible patients were vaccinated after IECT. In non-seroprotected patients, we discontinued testing. Before IECT, most patients had seroprotective antibody levels against tetanus (68/69, 99%) and diphtheria (65/69, 94%), but fewer did against pneumococcus (24/67, 36%). After IECT, all patients had seroprotective antibody levels for tetanus at 1 month (68/68) and 3-6 months (56/56). For diphtheria, 65/65 patients (100%) had seroprotective antibody levels at 1 month, and 48/53 (91%) did at 3-6 months. For pneumococcus, seroprotective antibody levels were identified in 91% (21/23) of patients at 1 month and 79% (15/19) at 3-6 months following IECT. Fifteen patients received a pneumococcal vaccine after IECT, but none achieved seroprotective response. One patient received the tetanus-diphtheria vaccine and had a seroprotective antibody response. Because some patients experience loss of immunity after IECT, studies evaluating vaccination strategies post-IECT are needed.
Collapse
Affiliation(s)
- Georgios Angelidakis
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roy F Chemaly
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pranoti V Sahasrabhojane
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
| | - Oscar Morado-Aramburo
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ying Jiang
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Micah M Bhatti
- Department of Clinical Microbiology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chitra Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Preetesh Jain
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kris Michael Mahadeo
- Department of Pediatrics, Division of Pediatric Transplant and Cellular Therapy, Duke University School of Medicine, Durham, NC 27705, USA
| | - Fareed Khawaja
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter Elhajj
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
| | - Nadim J Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer, Houston, TX 77030, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ella J Ariza-Heredia
- Departments of Infectious Diseases, Infection Control and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Brudno JN, Kochenderfer JN. Current understanding and management of CAR T cell-associated toxicities. Nat Rev Clin Oncol 2024; 21:501-521. [PMID: 38769449 DOI: 10.1038/s41571-024-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of several haematological malignancies and is being investigated in patients with various solid tumours. Characteristic CAR T cell-associated toxicities such as cytokine-release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are now well-recognized, and improved supportive care and management with immunosuppressive agents has made CAR T cell therapy safer and more feasible than it was when the first regulatory approvals of such treatments were granted in 2017. The increasing clinical experience with these therapies has also improved recognition of previously less well-defined toxicities, including movement disorders, immune effector cell-associated haematotoxicity (ICAHT) and immune effector cell-associated haemophagocytic lymphohistiocytosis-like syndrome (IEC-HS), as well as the substantial risk of infection in patients with persistent CAR T cell-induced B cell aplasia and hypogammaglobulinaemia. A more diverse selection of immunosuppressive and supportive-care pharmacotherapies is now being utilized for toxicity management, yet no universal algorithm for their application exists. As CAR T cell products targeting new antigens are developed, additional toxicities involving damage to non-malignant tissues expressing the target antigen are a potential hurdle. Continued prospective evaluation of toxicity management strategies and the design of less-toxic CAR T cell products are both crucial for ongoing success in this field. In this Review, we discuss the evolving understanding and clinical management of CAR T cell-associated toxicities.
Collapse
Affiliation(s)
- Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - James N Kochenderfer
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Kamboj M, Bohlke K, Baptiste DM, Dunleavy K, Fueger A, Jones L, Kelkar AH, Law LY, LeFebvre KB, Ljungman P, Miller ED, Meyer LA, Moore HN, Soares HP, Taplitz RA, Woldetsadik ES, Kohn EC. Vaccination of Adults With Cancer: ASCO Guideline. J Clin Oncol 2024; 42:1699-1721. [PMID: 38498792 PMCID: PMC11095883 DOI: 10.1200/jco.24.00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 03/20/2024] Open
Abstract
PURPOSE To guide the vaccination of adults with solid tumors or hematologic malignancies. METHODS A systematic literature review identified systematic reviews, randomized controlled trials (RCTs), and nonrandomized studies on the efficacy and safety of vaccines used by adults with cancer or their household contacts. This review builds on a 2013 guideline by the Infectious Disease Society of America. PubMed and the Cochrane Library were searched from January 1, 2013, to February 16, 2023. ASCO convened an Expert Panel to review the evidence and formulate recommendations. RESULTS A total of 102 publications were included in the systematic review: 24 systematic reviews, 14 RCTs, and 64 nonrandomized studies. The largest body of evidence addressed COVID-19 vaccines. RECOMMENDATIONS The goal of vaccination is to limit the severity of infection and prevent infection where feasible. Optimizing vaccination status should be considered a key element in the care of patients with cancer. This approach includes the documentation of vaccination status at the time of the first patient visit; timely provision of recommended vaccines; and appropriate revaccination after hematopoietic stem-cell transplantation, chimeric antigen receptor T-cell therapy, or B-cell-depleting therapy. Active interaction and coordination among healthcare providers, including primary care practitioners, pharmacists, and nursing team members, are needed. Vaccination of household contacts will enhance protection for patients with cancer. Some vaccination and revaccination plans for patients with cancer may be affected by the underlying immune status and the anticancer therapy received. As a result, vaccine strategies may differ from the vaccine recommendations for the general healthy adult population vaccine.Additional information is available at www.asco.org/supportive-care-guidelines.
Collapse
Affiliation(s)
- Mini Kamboj
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | - Kari Bohlke
- American Society of Clinical Oncology, Alexandria, VA
| | | | - Kieron Dunleavy
- MedStar Georgetown University Hospital, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC
| | - Abbey Fueger
- The Leukemia and Lymphoma Society, Rye Brook, NY
| | - Lee Jones
- Fight Colorectal Cancer, Arlington, VA
| | - Amar H Kelkar
- Harvard Medical School, Dana Farber Cancer Institute, Boston, MA
| | | | | | - Per Ljungman
- Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Eric D Miller
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Larissa A Meyer
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Heloisa P Soares
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT
| | | | | | - Elise C Kohn
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, MD
| |
Collapse
|
5
|
Bansal R, Vergidis P, Tosh PK, Wilson J, Hathcock M, Khurana A, Bennani NN, Paludo J, Villasboas JC, Wang Y, Ansell SM, Johnston PB, Freeman C, Lin Y. Serial Evaluation of Preimmunization Antibody Titers in Lymphoma Patients Receiving Chimeric Antigen Receptor T Cell Therapy. Transplant Cell Ther 2024; 30:455.e1-455.e7. [PMID: 38346643 DOI: 10.1016/j.jtct.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Antibody titers and the potential need for immunization have not been formally studied in recipients of chimeric antigen receptor T cell therapy (CAR-T). Prior studies have shown that CD19-targeted CAR-T can induce persistent B cell aplasia but preserve plasma cells for humoral response. Aiming to assess the immune repertoire and antibody titer status of CAR-T recipients, we conducted a retrospective study of immune cell recovery and antibody titers to vaccines in anti-CD19 CAR-T recipients at Mayo Clinic, Rochester. In our cohort of 95 CAR-T recipients, almost one-half had low CD4 T and B cell counts prior to CAR-T that remained persistently low post-CAR-T. Prior to CAR-T, the seronegative rate was lowest for tetanus and highest for pneumococcus irrespective of prior transplantation status (within 2 years of CAR-T). At 3 months post-CAR-T, overall seronegativity rates were similar to pre-CAR-T rates for the prior transplantation and no prior transplantation groups. For patients who received IVIG, loss of seropositivity was seen for hepatitis A (1 of 7; 14%). No seroconversion was noted for pneumococcus. For patients who did not receive IVIG, loss of seropositivity was seen for pneumococcus (2 of 5; 40%) and hepatitis A (1 of 4; 25%). CAR-T recipients commonly experience T cell and B cell lymphopenia and might not have adequate antibody titers against vaccine-preventable diseases despite IVIG supplementation. Loss of antibody titers post-CAR-T is possible, highlighting the need for revaccination. Additional studies with long-term follow-up are needed to inform the optimal timing of immunization post-CAR-T.
Collapse
Affiliation(s)
- Radhika Bansal
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | - Pritish K Tosh
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | - John Wilson
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | | | - Arushi Khurana
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - N Nora Bennani
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Jonas Paludo
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | - Yucai Wang
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Catherine Freeman
- Division of Asthma, Allergy and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona
| | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
6
|
Puckrin R, Jamani K, Jimenez-Zepeda VH. Long-term survivorship care after CAR-T cell therapy. Eur J Haematol 2024; 112:41-50. [PMID: 37767547 DOI: 10.1111/ejh.14100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
While cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome are well-recognized acute toxicities of chimeric antigen receptor (CAR) T cell therapy, these complications have become increasingly manageable by protocolized treatment algorithms incorporating the early administration of tocilizumab and corticosteroids. As CAR-T cell therapy expands to new disease indications and the number of long-term survivors steadily increases, there is growing recognition of the need to appropriately evaluate and manage the late effects of CAR-T cell therapy, including late-onset or persistent neurotoxicity, prolonged cytopenias, delayed immune reconstitution and infections, subsequent malignancies, organ dysfunction, psychological distress, and fertility implications. In this review, we provide a practical approach to the long-term survivorship care of the CAR-T cell recipient, with a focus on the optimal strategies to address the common and challenging late complications affecting this unique population.
Collapse
Affiliation(s)
- Robert Puckrin
- Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada
| | - Kareem Jamani
- Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada
| | - Victor H Jimenez-Zepeda
- Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Schett G, Mackensen A, Mougiakakos D. CAR T-cell therapy in autoimmune diseases. Lancet 2023; 402:2034-2044. [PMID: 37748491 DOI: 10.1016/s0140-6736(23)01126-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 09/27/2023]
Abstract
Despite the tremendous progress in the clinical management of autoimmune diseases, many patients do not respond to the currently used treatments. Autoreactive B cells play a key role in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. B-cell-depleting monoclonal antibodies, such as rituximab, have poor therapeutic efficacy in autoimmune diseases, mainly due to the persistence of autoreactive B cells in lymphatic organs and inflamed tissues. The adoptive transfer of T cells engineered to target tumour cells via chimeric antigen receptors (CARs) has emerged as an effective treatment modality in B-cell malignancies. In the last 2 years treatment with autologous CAR T cells directed against the CD19 antigen has been introduced in therapy of autoimmune disease. CD19 CAR T cells induced a rapid and sustained depletion of circulating B cells, as well as in a complete clinical and serological remission of refractory systemic lupus erythematosus and dermatomyositis. In this paper, we discuss the evolving strategies for targeting autoreactive B cells via CAR T cells, which might be used for targeted therapy in autoimmune diseases.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Andreas Mackensen
- Deutsches Zentrum Immuntherapie, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Department of Internal Medicine 5-Hematology and Clinical Oncology, Friedrich Alexander Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Otto-von-Guericke University, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation (GCI(3)), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
8
|
Reynolds G, Hall VG, Teh BW. Vaccine schedule recommendations and updates for patients with hematologic malignancy post-hematopoietic cell transplant or CAR T-cell therapy. Transpl Infect Dis 2023; 25 Suppl 1:e14109. [PMID: 37515788 PMCID: PMC10909447 DOI: 10.1111/tid.14109] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Revaccination after receipt of a hematopoietic cell transplant (HCT) or cellular therapies is a pillar of patient supportive care, with the potential to reduce morbidity and mortality linked to vaccine-preventable infections. This review synthesizes national, international, and expert consensus vaccination schedules post-HCT and presents evidence regarding the efficacy of newer vaccine formulations for pneumococcus, recombinant zoster vaccine, and coronavirus disease 2019 in patients with hematological malignancy. Revaccination post-cellular therapies are less well defined. This review highlights important considerations around poor vaccine response, seroprevalence preservation after cellular therapies, and the optimal timing of revaccination. Future research should assess the immunogenicity and real-world effectiveness of new vaccine formulations and/or vaccine schedules in patients post-HCT and cellular therapy, including analysis of vaccine response that relates to the target of cellular therapies.
Collapse
Affiliation(s)
- Gemma Reynolds
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Department of Infectious DiseasesAustin HealthHeidelbergVictoriaAustralia
| | - Victoria G. Hall
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Benjamin W. Teh
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| |
Collapse
|
9
|
Hahn WO, Hill JA, Kublin JG. Targeting enhanced neutralizing antibody responses via increased germinal center activity: early-phase vaccine trials with novel clinical designs. Curr Opin HIV AIDS 2023; 18:323-330. [PMID: 37751359 DOI: 10.1097/coh.0000000000000826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW Recent advances in the understanding of the difficult immunologic requirements for the induction of broadly neutralizing antibodies for HIV have spurred interest in optimizing vaccine approaches intended to stimulate a robust germinal center reaction. In preclinical models, techniques to optimize the germinal center response have included alterations in the timing, dose, and delivery method of immunogens and have resulted in substantially enhanced germinal center responses in lymph nodes and neutralizing antibodies in serum. One of the most promising approaches involves splitting the initial dose of vaccine into a series of gradual escalating doses administration ("fractional escalating doses"). In principle, these techniques may have broad implications for vaccines targeting a robust antibody response. RECENT FINDINGS We review the upcoming vaccine trials that will test these concepts in clinical practice. The trials include both HIV and non-HIV immunogens, and will involve testing these concepts in both healthy adults and immunocompromised persons. SUMMARY There are multiple trials that will test whether techniques to alter vaccine delivery such as fractional escalating doses enhances immunologic outcomes.
Collapse
|
10
|
Fattizzo B, Rampi N, Barcellini W. Vaccinations in hematological patients in the era of target therapies: Lesson learnt from SARS-CoV-2. Blood Rev 2023; 60:101077. [PMID: 37029066 PMCID: PMC10043962 DOI: 10.1016/j.blre.2023.101077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Novel targeting agents for hematologic diseases often exert on- or off-target immunomodulatory effects, possibly impacting on response to anti-SARS-CoV-2 vaccinations and other vaccines. Agents that primarily affect B cells, particularly anti-CD20 monoclonal antibodies (MoAbs), Bruton tyrosine kinase inhibitors, and anti-CD19 chimeric antigen T-cells, have the strongest impact on seroconversion. JAK2, BCL-2 inhibitors and hypomethylating agents may hamper immunity but show a less prominent effect on humoral response to vaccines. Conversely, vaccine efficacy seems not impaired by anti-myeloma agents such as proteasome inhibitors and immunomodulatory agents, although lower seroconversion rates are observed with anti-CD38 and anti-BCMA MoAbs. Complement inhibitors for complement-mediated hematologic diseases and immunosuppressants used in aplastic anemia do not generally affect seroconversion rate, but the extent of the immune response is reduced under steroids or anti-thymocyte globulin. Vaccination is recommended prior to treatment or as far as possible from anti-CD20 MoAb (at least 6 months). No clearcut indications for interrupting continuous treatment emerged, and booster doses significantly improved seroconversion. Cellular immune response appeared preserved in several settings.
Collapse
Affiliation(s)
- Bruno Fattizzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Nicolò Rampi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Wilma Barcellini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
11
|
Rossi JF, Bonnet E, Castelli C, Velensek M, Wisniewski E, Heraud S, Boustany R, David C, Dinet J, Sicard R, Daures JP, Bonifacy M, Mousset L, Goffart E. Clinical and Serological Follow-Up of 216 Patients with Hematological Malignancies after Vaccination with Pfizer-BioNT162b2 mRNA COVID-19 in a Real-World Study. Vaccines (Basel) 2023; 11:vaccines11030493. [PMID: 36992077 DOI: 10.3390/vaccines11030493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Hematological malignancies (HMs) have heterogeneous serological responses after vaccination due to disease or treatment. The aim of this real-world study was to analyze it after Pfizer-BioNT162b2 mRNA vaccination in 216 patients followed up for 1 year. The first 43 patients had an initial follow-up by a telemedicine (TM) system with no major events reported. The anti-spike IgG antibodies were checked 3–4 weeks post-first vaccination and every 3–4 months, by two standard bioassays and a rapid serological test (RST). Vaccine boosts were given when the level was <7 BAU/mL. Patients who did not seroconvert after 3–4 doses received tixagevimab/cilgavimab (TC). Fifteen results were discordant between two standard bioassays. Good agreement was observed between the standard and RST in 97 samples. After two doses, 68% were seroconverted (median = 59 BAU/mL) with a median of 162 BAU/mL and 9 BAU/mL, respectively, in untreated and treated patients (p < 0.001), particularly for patients receiving rituximab. Patients with gammaglobulin levels < 5 g/L had reduced seroconversion compared to higher levels (p = 0.019). The median levels were 228 BAU/mL post-second dose if seroconverted post-first and second, or if seroconverted only post-second dose. A total of 68% of post-second dose negative patients were post-third dose positive. A total of 16% received TC, six with non-severe symptomatic COVID-19 within 15–40 days. Personalized serological follow-up should apply particularly to patients with HMs.
Collapse
Affiliation(s)
- Jean-François Rossi
- Institut du Cancer Avignon-Provence, Sainte Catherine, 84000 Avignon, France
- Faculté de Médecine Montpellier, Université de Montpellier, 34094 Montpellier, France
| | - Emmanuel Bonnet
- Recherche Clinique Clinique Beau Soleil-Nouvelles Technologies, 34070 Montpellier, France
| | - Christel Castelli
- Recherche Clinique Clinique Beau Soleil-Nouvelles Technologies, 34070 Montpellier, France
| | - Marion Velensek
- Institut du Cancer Avignon-Provence, Sainte Catherine, 84000 Avignon, France
| | - Emma Wisniewski
- Institut du Cancer Avignon-Provence, Sainte Catherine, 84000 Avignon, France
| | - Sophie Heraud
- Institut du Cancer Avignon-Provence, Sainte Catherine, 84000 Avignon, France
| | - Rania Boustany
- Institut du Cancer Avignon-Provence, Sainte Catherine, 84000 Avignon, France
| | - Céleste David
- Institut du Cancer Avignon-Provence, Sainte Catherine, 84000 Avignon, France
| | | | - Roland Sicard
- Institut du Cancer Avignon-Provence, Sainte Catherine, 84000 Avignon, France
- Thess Corporate Inc., 34070 Montpellier, France
| | - Jean-Pierre Daures
- Recherche Clinique Clinique Beau Soleil-Nouvelles Technologies, 34070 Montpellier, France
| | | | | | | |
Collapse
|