1
|
Bouyahya A, El Omari N, Bakha M, Aanniz T, El Menyiy N, El Hachlafi N, El Baaboua A, El-Shazly M, Alshahrani MM, Al Awadh AA, Lee LH, Benali T, Mubarak MS. Pharmacological Properties of Trichostatin A, Focusing on the Anticancer Potential: A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:ph15101235. [PMID: 36297347 PMCID: PMC9612318 DOI: 10.3390/ph15101235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Trichostatin A (TSA), a natural derivative of dienohydroxamic acid derived from a fungal metabolite, exhibits various biological activities. It exerts antidiabetic activity and reverses high glucose levels caused by the downregulation of brain-derived neurotrophic factor (BDNF) expression in Schwann cells, anti-inflammatory activity by suppressing the expression of various cytokines, and significant antioxidant activity by suppressing oxidative stress through multiple mechanisms. Most importantly, TSA exhibits potent inhibitory activity against different types of cancer through different pathways. The anticancer activity of TSA appeared in many in vitro and in vivo investigations that involved various cell lines and animal models. Indeed, TSA exhibits anticancer properties alone or in combination with other drugs used in chemotherapy. It induces sensitivity of some human cancers toward chemotherapeutical drugs. TSA also exhibits its action on epigenetic modulators involved in cell transformation, and therefore it is considered an epidrug candidate for cancer therapy. Accordingly, this work presents a comprehensive review of the most recent developments in utilizing this natural compound for the prevention, management, and treatment of various diseases, including cancer, along with the multiple mechanisms of action. In addition, this review summarizes the most recent and relevant literature that deals with the use of TSA as a therapeutic agent against various diseases, emphasizing its anticancer potential and the anticancer molecular mechanisms. Moreover, TSA has not been involved in toxicological effects on normal cells. Furthermore, this work highlights the potential utilization of TSA as a complementary or alternative medicine for preventing and treating cancer, alone or in combination with other anticancer drugs.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Mohamed Bakha
- Unit of Plant Biotechnology and Sustainable Development of Natural Resources “B2DRN”, Polydisciplinary Faculty of Beni Mellal, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat B.P. 6203, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30050, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amma 11942, Jordan
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| |
Collapse
|
2
|
Liao L, Yao Z, Fang W, He Q, Xu WW, Li B. Epigenetics in Esophageal Cancer: From Mechanisms to Therapeutics. SMALL METHODS 2020; 4:2000391. [DOI: 10.1002/smtd.202000391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Long Liao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Zi‐Ting Yao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Wang‐Kai Fang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area Department of Biochemistry and Molecular Biology Shantou University Medical College Shantou 515041 China
| | - Qing‐Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| |
Collapse
|
3
|
Lin YS, Hu L, Yin MC. RETRACTED: Apoptotic Effects of Rotundic Acid on Human Esophagus and Lung Cancer Cells. Integr Cancer Ther 2016; 18:1534735416635275. [PMID: 27122053 PMCID: PMC6432785 DOI: 10.1177/1534735416635275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Yu-Sen Lin
- 1 Graduate Institute of Clinical Medical Science, China Medical University, Taichung City, Taiwan.,2 Division of Thoracic Surgery, China Medical University Hospital, Taichung City, Taiwan
| | - Lihong Hu
- 3 Shanghai Research Center for the Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mei-Chin Yin
- 4 Department of Nutrition, China Medical University, Taichung City, Taiwan.,5 Department of Health and Nutrition Biotechnology, Asia University, Taichung City, Taiwan
| |
Collapse
|
4
|
Morgan BJ, Dey S, Johnson SW, Kozlowski MC. Design, synthesis, and investigation of protein kinase C inhibitors: total syntheses of (+)-calphostin D, (+)-phleichrome, cercosporin, and new photoactive perylenequinones. J Am Chem Soc 2009; 131:9413-25. [PMID: 19489582 DOI: 10.1021/ja902324j] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The total syntheses of the PKC inhibitors (+)-calphostin D, (+)-phleichrome, cercosporin, and 10 novel perylenequinones are detailed. The highly convergent and flexible strategy developed employed an enantioselective oxidative biaryl coupling and a double cuprate epoxide opening, allowing the selective syntheses of all the possible stereoisomers in pure form. In addition, this strategy permitted rapid access to a broad range of analogues, including those not accessible from the natural products. These compounds provided a powerful means for evaluation of the perylenequinone structural features necessary to PKC activity. Simpler analogues were discovered with superior PKC inhibitory properties and superior photopotentiation in cancer cell lines relative to the more complex natural products.
Collapse
Affiliation(s)
- Barbara J Morgan
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
5
|
Lawless MW, Norris S, O'Byrne KJ, Gray SG. Targeting histone deacetylases for the treatment of disease. J Cell Mol Med 2008; 13:826-52. [PMID: 19175682 PMCID: PMC3823402 DOI: 10.1111/j.1582-4934.2008.00571.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ‘histone code’ is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular ‘code’ recognized and used by non-histone proteins to regulate specific chromatin functions. One modification, which has received significant attention, is that of histone acetylation. The enzymes that regulate this modification are described as lysine acetyltransferases or KATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The pro-inflammatory environment is increasingly being recognized as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential and current development of histone deacetylases for the treatment of diseases for which a pro-inflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the pro-inflammatory environment.
Collapse
Affiliation(s)
- M W Lawless
- Centre for Liver Disease, School of Medicine and Medical Science, Mater Misericordiae University Hospital - University College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
6
|
O'Brien E, Morgan B, Kozlowski M. Dynamic Stereochemistry Transfer in a Transannular Aldol Reaction: Total Synthesis of Hypocrellin A. Angew Chem Int Ed Engl 2008; 47:6877-80. [DOI: 10.1002/anie.200800734] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Dynamic Stereochemistry Transfer in a Transannular Aldol Reaction: Total Synthesis of Hypocrellin A. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200800734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Reddy RM, Yeow WS, Chua A, Nguyen DM, Baras A, Ziauddin MF, Shamimi-Noori SM, Maxhimer JB, Schrump DS, Nguyen DM. Rapid and profound potentiation of Apo2L/TRAIL-mediated cytotoxicity and apoptosis in thoracic cancer cells by the histone deacetylase inhibitor Trichostatin A: the essential role of the mitochondria-mediated caspase activation cascade. Apoptosis 2007; 12:55-71. [PMID: 17136498 DOI: 10.1007/s10495-006-0484-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Apo2L/TRAIL is actively investigated as a novel targeted agent to directly induce apoptosis of susceptible cancer cells. Apo2L/TRAIL-refractory cells can be sensitized to the cytotoxic effect of this ligand by cytotoxic chemotherapeutics. The aim of this study was to evaluate the in vitro tumoricidal activity of the Apo2L/TRAIL + Trichostatin A in cultured thoracic cancer cells and to elucidate the molecular basis of the synergistic cytotoxicity of this combination. Concurrent exposure of cultured cancer cells to sublethal concentrations of Apo2L/TRAIL and Trichostatin A resulted in profound enhancement of Apo2L/TRAIL-mediated cytotoxicity in all cell lines regardless of their intrinsic susceptibility to this ligand. This combination was not toxic to primary normal cells. While Apo2L/TRAIL alone or Trichostatin A alone mediated < 20% cell death, 60 to 90% of cancer cells were apoptotic following treatment with TSA + Apo2L/TRAIL combinations. Complete translocation of Bax from the cytosol to the mitochondria compartment was mainly observed in combination-treated cells and this was correlated with robust elevation of caspase 9 proteolytic activity indicative of activation of the mitochondria apoptogenic effect. Profound TSA + Apo2L/TRAIL-mediated cytotoxicity and apoptosis were completely abrogated by either Bcl2 over-expression or by the selective caspase 9 inhibitor, highlighting the essential role of mitochondria-dependent apoptosis signaling cascade in this process. Moreover, increased caspase 8 activity observed in cells treated with the TSA + Apo2L/TRAIL combination was completely suppressed by Bcl-2 over-expression or by the selective caspase 9 inhibitor indicating that the elevated caspase 8 activity in combination-treated cells was secondary to a mitochondria-mediated amplification feedback loop of caspase activation. These finding form the basis for further development of HDAC inhibitors + Apo2L/TRAIL combination as novel targeted therapy for thoracic malignancies.
Collapse
Affiliation(s)
- Rishindra M Reddy
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Johnson JJ, Mukhtar H. Curcumin for chemoprevention of colon cancer. Cancer Lett 2007; 255:170-81. [PMID: 17448598 DOI: 10.1016/j.canlet.2007.03.005] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
The most practical approach to reduce the morbidity and mortality of cancer is to delay the process of carcinogenesis through the use of chemopreventive agents. This necessitates that safer compounds, especially those derived from natural sources must be critically examined for chemoprevention. A spice common to India and the surrounding regions, is turmeric, derived from the rhizome of Curcuma longa. Pre-clinical studies in a variety of cancer cell lines including breast, cervical, colon, gastric, hepatic, leukemia, oral epithelial, ovarian, pancreatic, and prostate have consistently shown that curcumin possesses anti-cancer activity in vitro and in pre-clinical animal models. The robust activity of curcumin in colorectal cancer has led to five phase I clinical trials being completed showing the safety and tolerability of curcumin in colorectal cancer patients. To date clinical trials have not identified a maximum tolerated dose of curcumin in humans with clinical trials using doses up to 8000mg per day. The success of these trials has led to the development of phase II trials that are currently enrolling patients. Overwhelming in vitro evidence and completed clinical trials suggests that curcumin may prove to be useful for the chemoprevention of colon cancer in humans. This review will focus on describing the pre-clinical and clinical evidence of curcumin as a chemopreventive compound in colorectal cancer.
Collapse
Affiliation(s)
- Jeremy James Johnson
- University of Wisconsin, School of Pharmacy, 777 Highland Avenue, Madison, WI 53705-2222, USA.
| | | |
Collapse
|
10
|
Nguyen DM, Hussain M. The role of the mitochondria in mediating cytotoxicity of anti-cancer therapies. J Bioenerg Biomembr 2007; 39:13-21. [PMID: 17294132 DOI: 10.1007/s10863-006-9055-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Optimal cytotoxic anticancer therapy, at the cellular level, requires effective and selective induction of cell death to achieve a net reduction of biomass of malignant tissues. Standard cytotoxic chemotherapeutics have been developed based on the observations that mitotically active cancer cells are more susceptible than quiescent normal cells to chromosomal, microtubular or metabolic poisons. More recent development of molecularly targeted drugs for cancer focuses on exploiting biological differentials between normal and transformed cells for selective eradication of cancers. The common thread of "standard" and "novel" cytotoxic drugs is their ability to activate the apoptosis-inducing machinery mediated by mitochondria, also known as the intrinsic death signaling cascade. The aim of this article is to provide an overview of the role of the mitochondria, an energy-generating organelle essential for life, in mediating death when properly activated by cytotoxic stresses.
Collapse
Affiliation(s)
- Dao M Nguyen
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Room 4W-4-3940, 10 Center Drive, Bethesda, MD 29892, USA.
| | | |
Collapse
|
11
|
Abstract
Epigenetics is the study of heritable changes in gene expression that occur without changes in DNA sequence. It has a role in determining when and where a gene is expressed during development. Perhaps the most well known epigenetic mechanism is DNA methylation whereby cytosines at position 5 in CpG dinucleotides are methylated. Histone modification is another form of epigenetic control, which is quite complex and diverse. Histones and DNA make up the nucleosome which is the structural unit of chromatin which are involved in packaging DNA. Apart from the crucial role epigenetics plays in embryonic development, transcription, chromatin structure, X chromosome inactivation and genomic imprinting, its role in an increasing number of human diseases is more and more recognized. These diseases include cancer, and lung cancer in particular has been increasingly studied for the potential biological role of epigenetic changes with the promise of better and novel diagnostic and therapeutic tools.
Collapse
|
12
|
Mukhopadhyay NK, Weisberg E, Gilchrist D, Bueno R, Sugarbaker DJ, Jaklitsch MT. Effectiveness of trichostatin A as a potential candidate for anticancer therapy in non-small-cell lung cancer. Ann Thorac Surg 2006; 81:1034-42. [PMID: 16488717 DOI: 10.1016/j.athoracsur.2005.06.059] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/15/2005] [Accepted: 06/22/2005] [Indexed: 11/26/2022]
Abstract
BACKGROUND A well-known histone deacetylase inhibitor, trichostatin A, was applied to non-small-cell lung cancer cells to determine whether inhibition of histone deacetylase leads to the production of proteins that either arrest tumor cell growth or lead to tumor cell death. METHODS Trichostatin A (0.01 to 1.0 micromol/L) was applied to one normal lung fibroblast and four non-small-cell lung cancer lines, and its effect was determined by flow cytometry, annexin-V staining, immunoprecipitation, and Western blot analysis. RESULTS Trichostatin A demonstrated tenfold greater growth inhibition in all four non-small-cell lung cancer lines compared with normal controls, with a concentration producing 50% inhibition ranging from 0.01 to 0.04 micromol/L for the tumor cell lines and 0.7 micromol/L for the normal lung fibroblast line. Trichostatin A treatment reduced the percentage of cells in S phase (10% to 23%) and increased G1 populations (10% to 40%) as determined by flow cytometry. Both annexin-V binding assay and upregulation of the protein, gelsolin (threefold to tenfold), demonstrated that the tumor cells were apoptotic, whereas normal cells were predominantly in cell cycle arrest. Trichostatin A increased histone H4 acetylation and expression of p21 twofold to 15-fold without significant effect on p16, p27, CDK2, and cyclin D1. CONCLUSIONS Collectively, these data suggest that inhibition of histone deacetylation may provide a valuable approach for lung cancer treatment. We evaluated trichostatin A as a potential candidate for anticancer therapy in non-small-cell lung cancer.
Collapse
Affiliation(s)
- Nishit K Mukhopadhyay
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Yeow WS, Ziauddin MF, Maxhimer JB, Shamimi-Noori S, Baras A, Chua A, Schrump DS, Nguyen DM. Potentiation of the anticancer effect of valproic acid, an antiepileptic agent with histone deacetylase inhibitory activity, by the kinase inhibitor Staurosporine or its clinically relevant analogue UCN-01. Br J Cancer 2006; 94:1436-45. [PMID: 16705314 PMCID: PMC2361280 DOI: 10.1038/sj.bjc.6603132] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) are novel anticancer agents with potent cytotoxicity against a wide range of malignancies. We have previously demonstrated that either Calphostin C (CC) (a protein kinase C (PKC) inhibitor) or Parthenolide (an NF-kappaB inhibitor) abrogates HDACI-induced transcriptional activation of NF-kappaB and p21, which is associated with profound potentiation of HDACI-mediated induction of apoptosis. Valproic acid (VA), a commonly used antiepileptic agent, has recently been shown to be an HDACI. This study was aimed to evaluate the anticancer property of VA in thoracic cancer cells and the development of clinically relevant strategies to enhance VA-mediated induction of apoptosis using kinase inhibitors Staurosporine (STP) or its analogue UCN-01. Treating cultured thoracic cancer cells with VA (0.62-10.0 mM) resulted in significant cell line- and dose-dependent growth inhibition (IC(50) values: 4.1-6.0 mM) and cell cycle arrest at G1/S checkpoint with profound accumulation of cells at G0/G1 phase but little induction of apoptosis. Valproic acid, being an HDACI, caused significant dose-dependent accumulation of hyperacetylated histones, following 24 h of treatment. Valproic acid-mediated 5-20-fold upregulation of transcriptional activity of NF-kappaB was substantially (50-90%) suppressed by cotreatment with CC, STP or UCN-01. Whereas minimal death (<20%) was observed in cells treated with either VA (1.0 or 5.0 mM) alone or kinase inhibitors alone, 60-90% of cells underwent apoptosis following exposure to combinations of VA+kinase inhibitors. Kinase inhibitor-mediated suppression of NF-kappaB transcriptional activity played an important role in sensitising cancer cells to VA as direct inhibition of NF-kappaB by Parthenolide drastically synergised with VA to induce apoptosis (VA+Parthenolide: 60-90% compared to <20% following single-drug treatments). In conclusion, VA, a well-known antiepileptic drug, has mild growth-inhibitory activity on cultured cancer cells. The weak VA-mediated induction of apoptosis of thoracic cancer cells can be profoundly enhanced either by Parthenolide, a pharmacologic inhibitor of NF-kappaB, or by UCN-01 a kinase inhibitor that has already undergone phase I clinical development. Combinations of VA with either a PKC inhibitor or an NF-kappaB inhibitor are promising novel molecularly targeted therapeutics for thoracic cancers.
Collapse
Affiliation(s)
- W-S Yeow
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - M F Ziauddin
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - J B Maxhimer
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - S Shamimi-Noori
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - A Baras
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - A Chua
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - D S Schrump
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - D M Nguyen
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Room 4W-4-3940, 10 Center Drive, Bethesda, MD 20892, USA. E-mail:
| |
Collapse
|
14
|
Denlinger CE, Rundall BK, Jones DR. Inhibition of phosphatidylinositol 3-kinase/Akt and histone deacetylase activity induces apoptosis in non-small cell lung cancer in vitro and in vivo. J Thorac Cardiovasc Surg 2005; 130:1422-9. [PMID: 16256798 DOI: 10.1016/j.jtcvs.2005.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2005] [Revised: 06/06/2005] [Accepted: 06/16/2005] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Resistance to histone deacetylase inhibitors in non-small cell lung cancer is mediated in part through activation of nuclear factor-kappaB through a phosphatidylinositol 3-kinase/Akt-dependent pathway. We hypothesize that inhibition of phosphatidylinositol 3-kinase/Akt will sensitize non-small cell lung cancer cells to histone deacetylase inhibitor-induced apoptosis. METHODS Tumorigenic non-small cell lung cancer cell lines H157, H358, H460, and A549 were treated with nothing, the histone deacetylase inhibitor butyrate, the phosphatidylinositol 3-kinase/Akt inhibitor LY294002, or both compounds. Nuclear factor-kappaB activity was assessed by reporter gene assays and reverse transcriptase-polymerase chain reaction of the nuclear factor-kappaB dependent genes cIAP-2, Bfl/A1, and MnSOD. Whole cell extracts were immunoblotted for phospho-Akt, Akt, and phospho-ser/thr-Akt substrate. Cell death and apoptosis were measured by crystal violet staining, caspase-3 activity, and DNA fragmentation. A549 non-small cell lung cancer xenografts were created in athymic nude mice, and tumor growth was assessed after treatments as noted above. Explanted tumors underwent terminal deoxynucleotide transferase-mediated dUTP nick-end labeling and Western blot analyses for apoptosis assessment and drug target validation, respectively. RESULTS Butyrate activated nuclear factor-kappaB-dependent transcription, and LY294002 abrogated this effect. Combined treatment induced more apoptosis and cell death in vitro compared with either drug alone as measured by caspase-3, DNA fragmentation, and clonogenic survival. Combined butyrate and LY294002 was tumoristatic in vivo, but all other xenografts grew. This decreased tumor growth correlated with more apoptosis in the xenografts treated with combined therapy. Tumor levels of phospho-Akt and acetylated histone H3 were decreased and increased, respectively, in xenografts treated with combined therapy. CONCLUSIONS Combined histone deacetylase inhibitor and phosphatidylinositol 3-kinase/Akt pathway inhibition sensitized non-small cell lung cancer xenografts to apoptosis. Further investigations of this combined therapy are warranted as new pharmacologic phosphatidylinositol 3-kinase/Akt pathway inhibitors are developed.
Collapse
Affiliation(s)
- Chadrick E Denlinger
- Department of Surgery, University of Virginia, Charlottesville, Va 22908-0679, USA
| | | | | |
Collapse
|
15
|
Abstract
Esophageal cancers are highly lethal neoplasms which are generally refractory to conventional multidisciplinary interventions. Recent elucidation of the mechanisms of esophageal carcinogenesis, as well as preclinical studies utilizing chromatin remodeling agents and inhibitors of oncogene signaling in conjunction with conventional chemotherapeutic agents provide new opportunities for the development of potentially efficacious molecular targeted therapies for these malignancies.
Collapse
Affiliation(s)
- David S Schrump
- Thoracic Oncology Section, Surgery Branch, National Cancer Institute, Bldg. 10, Rm. 4-3490, 10 Center Drive MSC 1201, Bethesda, MD 20892, USA.
| | | |
Collapse
|