1
|
Han SI, Sunwoo SH, Park CS, Lee SP, Hyeon T, Kim DH. Next-Generation Cardiac Interfacing Technologies Using Nanomaterial-Based Soft Bioelectronics. ACS NANO 2024; 18:12025-12048. [PMID: 38706306 DOI: 10.1021/acsnano.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Cardiac interfacing devices are essential components for the management of cardiovascular diseases, particularly in terms of electrophysiological monitoring and implementation of therapies. However, conventional cardiac devices are typically composed of rigid and bulky materials and thus pose significant challenges for effective long-term interfacing with the curvilinear surface of a dynamically beating heart. In this regard, the recent development of intrinsically soft bioelectronic devices using nanocomposites, which are fabricated by blending conductive nanofillers in polymeric and elastomeric matrices, has shown great promise. The intrinsically soft bioelectronics not only endure the dynamic beating motion of the heart and maintain stable performance but also enable conformal, reliable, and large-area interfacing with the target cardiac tissue, allowing for high-quality electrophysiological mapping, feedback electrical stimulations, and even mechanical assistance. Here, we explore next-generation cardiac interfacing strategies based on soft bioelectronic devices that utilize elastic conductive nanocomposites. We first discuss the conventional cardiac devices used to manage cardiovascular diseases and explain their undesired limitations. Then, we introduce intrinsically soft polymeric materials and mechanical restraint devices utilizing soft polymeric materials. After the discussion of the fabrication and functionalization of conductive nanomaterials, the introduction of intrinsically soft bioelectronics using nanocomposites and their application to cardiac monitoring and feedback therapy follow. Finally, comments on the future prospects of soft bioelectronics for cardiac interfacing technologies are discussed.
Collapse
Affiliation(s)
- Sang Ihn Han
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Chan Soon Park
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Bruce CG, Khan JM, Rogers T, Yildirim DK, Jaimes AE, Seemann F, Chen MY, O’Brien K, Herzka DA, Schenke WH, Eckhaus MA, Potersnak AG, Campbell-Washburn A, Babaliaros VC, Greenbaum AB, Lederman RJ. Reshaping the Ventricle From Within: MIRTH (Myocardial Intramural Remodeling by Transvenous Tether) Ventriculoplasty in Swine. JACC. BASIC TO TRANSLATIONAL SCIENCE 2022; 8:37-50. [PMID: 36777171 PMCID: PMC9911325 DOI: 10.1016/j.jacbts.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/11/2022]
Abstract
MIRTH (Myocardial Intramural Remodeling by Transvenous Tether) is a transcatheter ventricular remodeling procedure. A transvenous tension element is placed within the walls of the beating left ventricle and shortened to narrow chamber dimensions. MIRTH uses 2 new techniques: controlled intramyocardial guidewire navigation and EDEN (Electrocardiographic Radial Depth Navigation). MIRTH caused a sustained reduction in chamber dimensions in healthy swine. Midventricular implants approximated papillary muscles. MIRTH shortening improved myocardial contractility in cardiomyopathy in a dose-dependent manner up to a threshold beyond which additional shortening reduced performance. MIRTH may help treat dilated cardiomyopathy. Clinical investigation is warranted.
Collapse
Key Words
- CMR, cardiac magnetic resonance
- CTO, chronic total occlusion
- EDEN, electrocardiographic radial depth navigation
- EDV, end-diastolic volume
- ESPVR, end-systolic pressure-volume relationship
- ESV, end-systolic volume
- Ees, end-systolic elastance
- LVEDP, left ventricular end-diastolic pressure
- LVESP, left ventricular end systolic pressure
- MIRTH, myocardial intramural remodeling by transvenous tether
- PRSW, preload recruitable stroke work
- PVA, pressure-volume area
- cardiac repair
- cardiomyopathy
- heart failure/etiology/mortality/surgery
- surgical ventricular restoration
- ventricular remodeling
- ventriculoplasty
Collapse
Affiliation(s)
- Christopher G. Bruce
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jaffar M. Khan
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Toby Rogers
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- MedStar Washington Hospital Center, Washington, DC, USA
| | - D. Korel Yildirim
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea E. Jaimes
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Felicia Seemann
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcus Y. Chen
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kendall O’Brien
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel A. Herzka
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William H. Schenke
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael A. Eckhaus
- Division of Veterinary Resources, National Institutes of Health, Bethesda, Maryland, USA
| | - Amanda G. Potersnak
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrienne Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Adam B. Greenbaum
- Structural Heart and Valve Center, Emory University Hospital, Atlanta, Georgia, USA
| | - Robert J. Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Address for correspondence: Dr Robert J. Lederman, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Building 10, Room 2c713, MSC 1538, Bethesda, Maryland 20892-1538, USA. @TheBethesdaLabs@ChrisGBruce13
| |
Collapse
|
3
|
Naveed M, Han L, Khan GJ, Yasmeen S, Mikrani R, Abbas M, Cunyu L, Xiaohui Z. Cardio-supportive devices (VRD & DCC device) and patches for advanced heart failure: A review, summary of state of the art and future directions. Biomed Pharmacother 2018; 102:41-54. [PMID: 29549728 DOI: 10.1016/j.biopha.2018.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 02/08/2023] Open
Abstract
Congestive heart failure (CHF) is a complicated pathophysiological syndrome, leading cause of hospitalization as well as mortalities in developed countries wherein an irregular function of the heart leads to the insufficient blood supply to the body organs. It is an accumulative slackening of various complications including myocardial infarction (MI), coronary heart disease (CAD), hypertension, valvular heart disease (VHD) and cardiomyopathy; its hallmarks include hypertrophy, increased interstitial fibrosis and loss of myocytes. The etiology of CHF is very complex and despite the rapid advancement in pharmacological and device-based interventional therapies still, a single therapy may not be sufficient to meet the demand for coping with the diseases. Total artificial hearts (TAH) and ventricular assist devices (VADs) have been widely used clinically to assist patients with severe HF. Unfortunately, direct contact between the patient's blood and device leads to thromboembolic events, and then coagulatory factors, as well as, infection contribute significantly to complicate the situation. There is no effective treatment of HF except cardiac transplantation, however, genetic variations, tissue mismatch; differences in certain immune response and socioeconomic crisis are an important concern with cardiac transplantation suggesting an alternate bridge to transplant (BTT) or destination therapies (DT). For these reasons, researchers have turned to mechanically driven compression devices, ventricular restraint devices (VRD) and heart patches. The ASD is a combination of all operational patches and cardiac support devices (CSD) by delivering biological agents and can restrain or compress the heart. Present study summarizes the accessible peer-reviewed literature focusing on the mechanism of Direct Cardiac Compression (DCC) devices, VRD and patches and their acquaintance to optimize the therapeutic efficacy in a synergistic way.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing, 211198, PR China
| | - Lei Han
- Department of Pharmacy, Jiangsu Jiankang Vocational College, Jiangsu Province, Nanjing 211800, PR China; Department of Pharmacy, Jiangsu Worker Medical University, Jiangsu Province, Nanjing 211198, PR China
| | - Ghulam Jilany Khan
- Department of Pharmacology, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing, 210009, PR China
| | - Sufia Yasmeen
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing, 211198, PR China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing, 211198, PR China
| | - Muhammad Abbas
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing, 211198, PR China
| | - Li Cunyu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing, 211198, PR China
| | - Zhou Xiaohui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing, 211198, PR China; Department of Surgery, Nanjing Shuiximen Hospital, Jiangsu Province, Nanjing, 210017, PR China; Department of Cardiothoracic Surgery, Zhongda Hospital Affiliated to Southeast University, Jiangsu Province, Nanjing, 210017, PR China.
| |
Collapse
|
4
|
Naveed M, Mohammad IS, Xue L, Khan S, Gang W, Cao Y, Cheng Y, Cui X, DingDing C, Feng Y, Zhijie W, Xiaohui Z. The promising future of ventricular restraint therapy for the management of end-stage heart failure. Biomed Pharmacother 2018; 99:25-32. [PMID: 29324309 DOI: 10.1016/j.biopha.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 01/31/2023] Open
Abstract
Complicated pathophysiological syndrome associated with irregular functioning of the heart leading to insufficient blood supply to the organs is linked to congestive heart failure (CHF) which is the leading cause of death in developed countries. Numerous factors can add to heart failure (HF) pathogenesis, including myocardial infarction (MI), genetic factors, coronary artery disease (CAD), ischemia or hypertension. Presently, most of the therapies against CHF cause modest symptom relief but incapable of giving significant recovery for long-term survival outcomes. Unfortunately, there is no effective treatment of HF except cardiac transplantation but genetic variations, tissue mismatch, differences in certain immune response and socioeconomic crisis are some major concern with cardiac transplantation, suggested an alternate bridge to transplant (BTT) or destination therapies (DT). Ventricular restraint therapy (VRT) is a promising, non-transplant surgical treatment wherein the overall goal is to wrap the dilated heart with prosthetic material to mechanically restrain the heart at end-diastole, stop extra remodeling, and thereby ultimately improve patient symptoms, ventricular function and survival. Ventricular restraint devices (VRDs) are developed to treat end-stage HF and BTT, including the CorCap cardiac support device (CSD) (CSD; Acorn Cardiovascular Inc, St Paul, Minn), Paracor HeartNet (Paracor Medical, Sunnyvale, Calif), QVR (Polyzen Inc, Apex, NC) and ASD (ASD, X. Zhou). An overview of 4 restraint devices, with their precise advantages and disadvantages, will be presented. The accessible peer-reviewed literature summarized with an important considerations on the mechanism of restraint therapy and how this acquaintance can be accustomed to optimize and improve its effectiveness.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Imran Shair Mohammad
- Department of Pharmaceutics, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Li Xue
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Sara Khan
- Department of Pharmaceutical Chemistry, University College of Pharmacy, University of the Punjab, Lahore 5400, Pakistan
| | - Wang Gang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Yanfang Cao
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Yijie Cheng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Xingxing Cui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Chen DingDing
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China.
| | - Yu Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China.
| | - Wang Zhijie
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, PR China.
| | - Zhou Xiaohui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China; Department of Heart Surgery, Nanjing Shuiximen Hospital, Jiangsu Province, Nanjing 210017, PR China; Department of Cardiothoracic Surgery, Zhongda Hospital affiliated to Southeast University, Jiangsu Province, Nanjing 210017, PR China.
| |
Collapse
|
5
|
Exo-organoplasty interventions: A brief review of past, present and future directions for advance heart failure management. Biomed Pharmacother 2017; 88:162-172. [PMID: 28103510 DOI: 10.1016/j.biopha.2017.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is a debilitating disease in which abnormal function of the heart leads to imbalance of blood demand to tissues and organs. The pathogenesis of HF is very complex and various factors can contribute including myocardial infarction, ischemia, hypertension and genetic cardiomyopathies. HF is the leading cause of death and its prevalence is expected to increase in parallel with the population age. Different kind of therapeutic approaches including lifestyle modification, medication and pacemakers are used for HF patients in NYHA I-III functional class. However, for advance stage HF patient's (NYHA IV), ventricle assist devices are clinically use and stem cells are under active investigation. Most of these therapies leads to modest symptoms relief and have no significant role in long-term survival rate. Currently there is no effective treatment for advance HF except heart transplantation, which is still remain clinically insignificant because of donor pool limitation. As HF is a result of multiple etiologies therefore multi-functional therapeutic platform is needed. Exo-organoplasty interventions are studied from almost one century. The major goals of these interventions are to treat various kind of heart disease from outside the heart muscle without having direct contact with blood. Various kind of interventions (devices and techniques) are developed in this arena with the passage of time. The purpose of this review is to describe the theory behind intervention devices, the devices themselves, their clinical results, advantages and limitations. Furthermore, to present a future multi-functional therapeutic platform (ASD) for advance stage HF management.
Collapse
|
6
|
Diastolic ventricular support with cardiac support devices: an alternative approach to prevent adverse ventricular remodeling. Heart Fail Rev 2013; 18:55-63. [PMID: 22527015 DOI: 10.1007/s10741-012-9312-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heart failure is a global epidemic with limited therapy. Abnormal left ventricular wall stress in the diseased myocardium results in a biochemical positive feedback loop that results in global ventricular remodeling and further deterioration of myocardial function. Mechanical myocardial restraints such as the Acorn CorCap and Paracor HeartNet ventricular restraints have attempted to minimize diastolic ventricular wall stress and limit adverse ventricular remodeling. Unfortunately, these therapies have not yielded viable clinical therapies for heart failure. Cellular and novel biopolymer-based therapies aimed at stabilizing pathologic myocardium hold promise for translation to clinical therapy in the future.
Collapse
|
7
|
Kwon MH, Cevasco M, Schmitto JD, Chen FY. Ventricular restraint therapy for heart failure: A review, summary of state of the art, and future directions. J Thorac Cardiovasc Surg 2012; 144:771-777.e1. [DOI: 10.1016/j.jtcvs.2012.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/02/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
|
8
|
Lee LS, Ghanta RK, Mokashi SA, Coelho-Filho O, Kwong RY, Kwon M, Guan J, Liao R, Chen FY. Optimized ventricular restraint therapy: adjustable restraint is superior to standard restraint in an ovine model of ischemic cardiomyopathy. J Thorac Cardiovasc Surg 2012; 145:824-31. [PMID: 22698557 DOI: 10.1016/j.jtcvs.2012.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/09/2012] [Accepted: 05/09/2012] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The effects of ventricular restraint level on left ventricular reverse remodeling are not known. We hypothesized that restraint level affects the degree of reverse remodeling and that restraint applied in an adjustable manner is superior to standard, nonadjustable restraint. METHODS This study was performed in 2 parts using a model of chronic heart failure in the sheep. In part I, restraint was applied at control (0 mm Hg, n = 3), low (1.5 mm Hg, n = 3), and high (3.0 mm Hg, n = 3) levels with an adjustable and measurable ventricular restraint (AMVR) device. Restraint level was not altered throughout the 2-month treatment period. Serial restraint level measurements and transthoracic echocardiography were performed. In part II, restraint was applied with the AMVR device set at 3.0 mm Hg (n = 6) and adjusted periodically to maintain that level. This was compared with restraint applied in a standard, nonadjustable manner using a mesh wrap (n = 6). All subjects were followed up for 2 months with serial magnetic resonance imaging. RESULTS In part I, there was greater and earlier reverse remodeling in the high restraint group. In both groups, the rate of reverse remodeling peaked and then declined as the measured restraint level decreased with progression of reverse remodeling. In part II, adjustable restraint resulted in greater reverse remodeling than standard restraint. Left ventricular end diastolic volume decreased by 12.7% (P = .005) with adjustable restraint and by 5.7% (P = .032) with standard restraint. Left ventricular ejection fraction increased by 18.9% (P = .014) and 14.4% (P < .001) with adjustable and standard restraint, respectively. CONCLUSIONS Restraint level affects the rate and degree of reverse remodeling and is an important determinant of therapy efficacy. Adjustable restraint is more effective than nonadjustable restraint in promoting reverse remodeling.
Collapse
Affiliation(s)
- Lawrence S Lee
- Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Prospective Evaluation of Elastic Restraint to Lessen the Effects of Heart Failure (PEERLESS-HF) Trial. J Card Fail 2012; 18:446-58. [DOI: 10.1016/j.cardfail.2012.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/18/2022]
|
10
|
Ginat D, Massey HT, Bhatt S, Dogra VS. Imaging of mechanical cardiac assist devices. J Clin Imaging Sci 2011; 1:21. [PMID: 21966618 PMCID: PMC3177429 DOI: 10.4103/2156-7514.80373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/20/2011] [Indexed: 11/29/2022] Open
Abstract
Diagnostic imaging plays an important role in the assessment of patients with mechanical cardiac assist devices. Therefore, it is important for radiologists to be familiar with the basic components, function, and radiographic appearances of these devices in order to appropriately diagnose complications. The purpose of this pictorial essay is to review indications, components, normal imaging appearances, and complications of surgically and percutaneously implanted ventricular assist devices, intra-aortic balloon pumps, and cardiac meshes.
Collapse
Affiliation(s)
- Daniel Ginat
- Department of Imaging Sciences, University of Rochester School of Medicine, Rochester, NY, USA
| | | | | | | |
Collapse
|
11
|
Successful Implantation of a Left Ventricular Assist Device After Treatment With the Paracor HeartNet. ASAIO J 2011; 56:457-9. [PMID: 20595889 DOI: 10.1097/mat.0b013e3181e92f94] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Paracor HeartNet, a ventricular constraint device for the treatment of heart failure (HF), is implanted through a left lateral thoracotomy. It envelopes the heart like a mesh "bag." This method of application raises the question of whether adhesions with the pericardium allow the safe implantation of a left ventricular assist device (LVAD) if HF worsens. A male patient who had undergone implantation of the Paracor HeartNet 42 months earlier presented with advanced HF for cardiac transplantation. The patient's condition deteriorated, and because no suitable organ for transplantation was available, implantation of an LVAD became necessary. Surgery was performed via a median sternotomy without complications. No severe adhesions were found. This is the first report on "how to do" LVAD implantation after Paracor HeartNet implantation with images and information about cutting the constraint. Because the Paracor HeartNet is "wrapped" around the heart, concerns persist that severe adhesions with the pericardium might occur. In this case, LVAD implantation after therapy with the Paracor HeartNet was without complications, and the expected massive adhesions were absent.
Collapse
|
12
|
Aranda JM, Martin TD, Leach DD, Klodell CT. Reoperative cardiac surgery after long-term ventricular support therapy. J Heart Lung Transplant 2008; 27:789-91. [PMID: 18582810 DOI: 10.1016/j.healun.2008.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 04/15/2008] [Accepted: 04/21/2008] [Indexed: 11/29/2022] Open
Abstract
The use of investigational passive support devices continues to be evaluated in the treatment of heart failure. One concern with this technology is the future need for a reoperation such as coronary artery bypass surgery, placement of a left ventricular assist device or cardiac transplantation. In this report, we describe our experience with two patients who required reoperation after long-term use of a passive ventricular support device.
Collapse
Affiliation(s)
- Juan M Aranda
- Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, Florida 32610-0277, USA.
| | | | | | | |
Collapse
|
13
|
Freedberg NA. Passive ventricular restraint device with defibrillation capabilities: is there a panacea for heart failure on the horizon? J Cardiovasc Electrophysiol 2008; 19:858-60. [PMID: 18479323 DOI: 10.1111/j.1540-8167.2008.01198.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Misra A, Mann DL. Treatment of Heart Failure Beyond Practice Guidelines Role of Cardiac Remodeling. Circ J 2008; 72 Suppl A:A1-7. [DOI: 10.1253/circj.cj-08-0661] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arunima Misra
- Winters Center for Heart Failure Research, Section of Cardiology, Department of Medicine, Baylor College of Medicine
| | - Douglas L. Mann
- Winters Center for Heart Failure Research, Section of Cardiology, Department of Medicine, Baylor College of Medicine
- Faculty Center, Texas Heart Institute
| |
Collapse
|
15
|
Worldwide surgical experience with the Paracor HeartNet cardiac restraint device. J Thorac Cardiovasc Surg 2008; 135:188-95. [DOI: 10.1016/j.jtcvs.2007.09.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 08/12/2007] [Accepted: 09/20/2007] [Indexed: 11/17/2022]
|
16
|
Ahuja K, Crooke GA, Grossi EA, Galloway AC, Jorde UP. Reversing Left Ventricular Remodeling in Chronic Heart Failure. Cardiol Rev 2007; 15:184-90. [PMID: 17575482 DOI: 10.1097/crd.0b013e318053d13f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic heart failure (CHF) has become an epidemic in the United States, with approximately 550,000 new cases annually. With the evolution of pharmacotherapy targeting neurohormonal pathways, the annual mortality in subjects with New York Heart Association (NYHA) class IV CHF has dramatically improved from 52% in the seminal CONSENSUS trial to less than 20% in more recent trials. Suppression of the renin-angiotensin-aldosterone system remains the first line of neurohormonal blockade followed by the addition of selective beta-adrenoreceptor blockers. For patients with NYHA class I and II symptoms, mortality rates have decreased to approximately 5% or less per year with the use of angiotensin-converting enzyme inhibitors, beta-blockers and aldosterone receptor blockers. However, after achieving optimal doses of the indicated pharmacotherapy, and despite the additional benefits obtained with biventricular pacemakers, there are still many patients who continue to experience signs and symptoms of CHF. Recognizing the beneficial effects of the above treatments on left ventricular (LV) remodeling, strategies have been developed to surgically reshape the left ventricle in patients with LV dilation who have associated poor LV function. This review will discuss the techniques and recent developments regarding surgical reshaping of the dilated, dysfunctional, and remodeled left ventricle.
Collapse
Affiliation(s)
- Kartikya Ahuja
- Heart Failure Center, Leon Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|