1
|
Walweel K, Skeggs K, Boon AC, See Hoe LE, Bouquet M, Obonyo NG, Pedersen SE, Diab SD, Passmore MR, Hyslop K, Wood ES, Reid J, Colombo SM, Bartnikowski NJ, Wells MA, Black D, Pimenta LP, Stevenson AK, Bisht K, Marshall L, Prabhu DA, James L, Platts DG, Macdonald PS, McGiffin DC, Suen JY, Fraser JF. Endothelin receptor antagonist improves donor lung function in an ex vivo perfusion system. J Biomed Sci 2020; 27:96. [PMID: 33008372 PMCID: PMC7532654 DOI: 10.1186/s12929-020-00690-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A lung transplant is the last resort treatment for many patients with advanced lung disease. The majority of donated lungs come from donors following brain death (BD). The endothelin axis is upregulated in the blood and lung of the donor after BD resulting in systemic inflammation, lung damage and poor lung graft outcomes in the recipient. Tezosentan (endothelin receptor blocker) improves the pulmonary haemodynamic profile; however, it induces adverse effects on other organs at high doses. Application of ex vivo lung perfusion (EVLP) allows the development of organ-specific hormone resuscitation, to maximise and optimise the donor pool. Therefore, we investigate whether the combination of EVLP and tezosentan administration could improve the quality of donor lungs in a clinically relevant 6-h ovine model of brain stem death (BSD). METHODS After 6 h of BSD, lungs obtained from 12 sheep were divided into two groups, control and tezosentan-treated group, and cannulated for EVLP. The lungs were monitored for 6 h and lung perfusate and tissue samples were processed and analysed. Blood gas variables were measured in perfusate samples as well as total proteins and pro-inflammatory biomarkers, IL-6 and IL-8. Lung tissues were collected at the end of EVLP experiments for histology analysis and wet-dry weight ratio (a measure of oedema). RESULTS Our results showed a significant improvement in gas exchange [elevated partial pressure of oxygen (P = 0.02) and reduced partial pressure of carbon dioxide (P = 0.03)] in tezosentan-treated lungs compared to controls. However, the lungs hematoxylin-eosin staining histology results showed minimum lung injuries and there was no difference between both control and tezosentan-treated lungs. Similarly, IL-6 and IL-8 levels in lung perfusate showed no difference between control and tezosentan-treated lungs throughout the EVLP. Histological and tissue analysis showed a non-significant reduction in wet/dry weight ratio in tezosentan-treated lung tissues (P = 0.09) when compared to control. CONCLUSIONS These data indicate that administration of tezosentan could improve pulmonary gas exchange during EVLP.
Collapse
Affiliation(s)
- K Walweel
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.
| | - K Skeggs
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.,Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - A C Boon
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - L E See Hoe
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - M Bouquet
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - N G Obonyo
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.,Initiative to Develop African Research Leaders, KEMRI-Wellcome, Trust Research Programme, Kilifi, Kenya
| | - S E Pedersen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - S D Diab
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - M R Passmore
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - K Hyslop
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - E S Wood
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - J Reid
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - S M Colombo
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.,University of Milan, Milan, Italy
| | | | - M A Wells
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.,School of Medical Science, Griffith University, Brisbane, Australia
| | - D Black
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - L P Pimenta
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - A K Stevenson
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - K Bisht
- Mater Research Institute-The University of Queensland, Woolloongabba, QLD, Australia
| | - L Marshall
- The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - D A Prabhu
- The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - L James
- Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - D G Platts
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - P S Macdonald
- Cardiac Mechanics Research Laboratory, St. Vincent's Hospital and the Victor Chang Cardiac Research Institute, Victoria Street, Darlinghurst, Sydney, NSW, 2061, Australia
| | - D C McGiffin
- Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Melbourne, Australia
| | - J Y Suen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.
| | - J F Fraser
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.
| |
Collapse
|
2
|
Ayyat KS, Okamoto T, Niikawa H, Sakanoue I, Dugar S, Latifi SQ, Lebovitz DJ, Moghekar A, McCurry KR. A CLUE for better assessment of donor lungs: Novel technique in clinical ex vivo lung perfusion. J Heart Lung Transplant 2020; 39:1220-1227. [PMID: 32773324 DOI: 10.1016/j.healun.2020.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The direCt Lung Ultrasound Evaluation (CLUE) technique was proven to be an accurate method for monitoring extravascular lung water in donor lungs during ex vivo lung perfusion (EVLP) in an experimental model. The aim of this study was to examine the application of CLUE in the clinical setting. METHODS Lungs were evaluated using acellular EVLP protocol. Ultrasound images were obtained directly from the lung surface. Images were graded according to the percentage of B-lines seen on ultrasound. CLUE scores were calculated at the beginning and end of EVLP for the whole lung, each side, and lobe based on the number (No.) of images in each grade and the total No. of images taken and evaluated retrospectively. RESULTS A total of 23 EVLP cases were performed resulting in 13 lung transplants (LTxs) with no hospital mortality. Primary graft dysfunction (PGD) occurred in only 1 recipient (PGD3, no PGD2). Significant differences were found between suitable and non-suitable lungs in CLUE scores (1.03 vs 1.85, p < 0.001), unlike the partial pressure of oxygen/fraction of inspired oxygen ratio. CLUE had the highest area under the receiver operating characteristic curve (0.98) compared with other evaluation parameters. The initial CLUE score of standard donor lungs was significantly better than marginal lungs. The final CLUE score in proned lungs showed improvement when compared with initial CLUE score, especially in the upper lobes. CONCLUSIONS The CLUE technique shows the highest accuracy in evaluating donor lungs for LTx suitability compared with other parameters used in EVLP. CLUE can optimize the outcomes of LTx by guiding the decision making through the whole process of clinical EVLP.
Collapse
Affiliation(s)
- Kamal S Ayyat
- Department of Inflammation and Immunology, Lerner Research Institute and; Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Department of Cardiothoracic Surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Toshihiro Okamoto
- Department of Inflammation and Immunology, Lerner Research Institute and; Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Transplant Center
| | - Hiromichi Niikawa
- Department of Inflammation and Immunology, Lerner Research Institute and; Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Ichiro Sakanoue
- Department of Inflammation and Immunology, Lerner Research Institute and; Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | | | - Samir Q Latifi
- Department of Pediatric Critical Care, Cleveland Clinic, Cleveland, Ohio; Lifebanc, Cleveland, Ohio
| | - Daniel J Lebovitz
- Lifebanc, Cleveland, Ohio; Department of Critical Care Medicine, Akron Children's Hospital, Akron, Ohio
| | | | - Kenneth R McCurry
- Department of Inflammation and Immunology, Lerner Research Institute and; Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Transplant Center.
| |
Collapse
|
3
|
Transplant Suitability of Rejected Human Donor Lungs With Prolonged Cold Ischemia Time in Low-Flow Acellular and High-Flow Cellular Ex Vivo Lung Perfusion Systems. Transplantation 2019; 103:1799-1808. [DOI: 10.1097/tp.0000000000002667] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Sommer W, Salman J, Avsar M, Hoeffler K, Jansson K, Siemeni TN, Knoefel AK, Ahrens L, Poyanmehr R, Tudorache I, Braubach P, Jonigk D, Haverich A, Warnecke G. Prediction of transplant outcome after 24-hour ex vivo lung perfusion using the Organ Care System in a porcine lung transplantation model. Am J Transplant 2019; 19:345-355. [PMID: 30106236 DOI: 10.1111/ajt.15075] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 07/22/2018] [Accepted: 07/22/2018] [Indexed: 01/25/2023]
Abstract
Ex vivo lung perfusion (EVLP) has become routine practice in lung transplantation. Still, running periods exceeding 12 hours have not been undertaken clinically to date, and it remains unclear how the perfusion solution for extended running periods should be composed and which parameters may predict outcomes. Twenty-four porcine lungs underwent EVLP for 24 hours using the Organ Care System (OCS). Lungs were ventilated and perfused with STEEN's solution enriched with erythrocytes (n = 8), acellular STEEN's solution (n = 8), or low-potassium dextran (LPD) solution enriched with erythrocytes (n = 8). After 24 hours, the left lungs were transplanted into recipient pigs. After clamping of the contralateral lung, the recipients were observed for 6 hours. The most favorable outcome was observed in organs utilizing STEEN solution enriched with erythrocytes as perfusate, whereas the least favorable outcome was seen with LPD solution enriched with erythrocytes for perfusion. Animals surviving the observation period showed lower peak airway pressure (PAWP) and pulmonary vascular resistance (PVR) during OCS preservation. The results suggest that transplantation of lungs following 24 hours of EVLP is feasible but dependent on the composition of the perfusate. PAWP and PVR during EVLP are early and late predictors of transplant outcome, respectively.
Collapse
Affiliation(s)
- Wiebke Sommer
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jawad Salman
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Murat Avsar
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Klaus Hoeffler
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Katharina Jansson
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Thierry N Siemeni
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ann-Kathrin Knoefel
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Linda Ahrens
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Reza Poyanmehr
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Igor Tudorache
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Weathington NM, Álvarez D, Sembrat J, Radder J, Cárdenes N, Noda K, Gong Q, Wong H, Kolls J, D'Cunha J, Mallampalli RK, Chen BB, Rojas M. Ex vivo lung perfusion as a human platform for preclinical small molecule testing. JCI Insight 2018; 3:95515. [PMID: 30282819 DOI: 10.1172/jci.insight.95515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) causes an estimated 70,000 US deaths annually. Multiple pharmacologic interventions for ARDS have been tested and failed. An unmet need is a suitable laboratory human model to predictively assess emerging therapeutics on organ function in ARDS. We previously demonstrated that the small molecule BC1215 blocks actions of a proinflammatory E3 ligase-associated protein, FBXO3, to suppress NF-κB signaling in animal models of lung injury. Ex vivo lung perfusion (EVLP) is a clinical technique that maintains lung function for possible transplant after organ donation. We used human lungs unacceptable for transplant to model endotoxemic injury with EVLP for 6 hours. LPS infusion induced inflammatory injury with impaired oxygenation of pulmonary venous circulation. BC1215 treatment after LPS rescued oxygenation and decreased inflammatory cytokines in bronchoalveolar lavage. RNA sequencing transcriptomics from biopsies taken during EVLP revealed robust inflammatory gene induction by LPS with a strong signal for NF-κB-associated transcripts. BC1215 treatment reduced the LPS induction of genes associated with inflammatory and host defense gene responses by Gene Ontology (GOterm) and pathways analysis. BC1215 also significantly antagonized LPS-mediated NF-κB activity. EVLP may provide a unique human platform for preclinical study of chemical entities such as FBXO3 inhibitors on tissue physiology.
Collapse
Affiliation(s)
| | - Diana Álvarez
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,Simmons Center for Interstitial Lung Disease, and
| | - John Sembrat
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,Simmons Center for Interstitial Lung Disease, and
| | - Josiah Radder
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Nayra Cárdenes
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,Simmons Center for Interstitial Lung Disease, and
| | - Kentaro Noda
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qiaoke Gong
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Hesper Wong
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Jay Kolls
- Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Jonathan D'Cunha
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rama K Mallampalli
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,The Veterans Affairs Pittsburgh Health System, Pittsburgh, Pennsylvania, USA
| | - Bill B Chen
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine.,Simmons Center for Interstitial Lung Disease, and.,The University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
|
7
|
Himmat S, Alzamil A, Aboelnazar N, Hatami S, White C, Dromparis P, Mengel M, Freed D, Nagendran J. A Decrease in Hypoxic Pulmonary Vasoconstriction Correlates With Increased Inflammation During Extended Normothermic Ex Vivo Lung Perfusion. Artif Organs 2017; 42:271-279. [PMID: 29266272 DOI: 10.1111/aor.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/12/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
Normothermic ex vivo lung perfusion (EVLP) is an evolving technology to evaluate function of donor lungs to determine suitability for transplantation. We hypothesize that hypoxic pulmonary vasoconstriction (HPV) during EVLP will provide a more sensitive parameter of lung function to determine donor lung quality for lung transplantation. Eight porcine lungs were procured, and subsequently underwent EVLP with autologous blood and STEEN solution for 10 h. Standard physiologic parameters including dynamic compliance, peak airway pressure, and pulmonary vascular resistance (PVR) remained stable (P = 0.055), mean oxygenation (PO2 /FiO2 ) was 400 ± 18 mm Hg on average throughout perfusion. Response to hypoxia resulted in a robust increase in PVR (ΔPVR) up to 4 h of perfusion, however the HPV response then blunted beyond T6 (P < 0.01). The decrease in HPV response inversely correlated to cytokine concentrations of Interleukin-6 and tumor necrosis factor-α (P < 0.01). Despite acceptable lung oxygenation and standard physiologic parameters during 10 h of EVLP, there is a subclinical deterioration of lung function. HPV challenges can be performed during EVLP as a simple and more sensitive index of pulmonary vascular reactivity.
Collapse
Affiliation(s)
- Sayed Himmat
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Almothana Alzamil
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Nader Aboelnazar
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Sanaz Hatami
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Christopher White
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Peter Dromparis
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Darren Freed
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada.,Division of Cardiac Surgery, Department of Surgery, Alberta Transplant Institute, Edmonton, Alberta, Canada.,Canadian National Transplant Research Program, Canadian Institute for Health Research, Edmonton, Alberta, Canada
| | - Jayan Nagendran
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada.,Division of Cardiac Surgery, Department of Surgery, Alberta Transplant Institute, Edmonton, Alberta, Canada.,Canadian National Transplant Research Program, Canadian Institute for Health Research, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The purpose of the current report is to review the ex-vivo peer-reviewed literature published in the last 5 years and to summarize the findings. RECENT FINDINGS Encouraging data have been published by several centers utilizing ex-vivo lung perfusion (EVLP) as a means to identify viable grafts from the high-risk donor pool. The outcomes of transplanted lungs that were initially declined because of poor quality, but reevaluated with ex-vivo perfusion, are equivalent to standard criteria donor lungs. Further, research reports have emphasized the role of ex-vivo perfusion as a platform to improve graft quality and reduce the injurious effects of ischemia-reperfusion. SUMMARY Over the last 10 years, EVLP has proved its value as a reassessment tool to increase donor utilization. As short- and long-term data demonstrate the safety of EVLP, its use as a therapeutic platform is emerging, along with the promise of a new era in lung transplantation.
Collapse
|
9
|
Martens A, Boada M, Vanaudenaerde BM, Verleden SE, Vos R, Verleden GM, Verbeken EK, Van Raemdonck D, Schols D, Claes S, Neyrinck AP. Steroids can reduce warm ischemic reperfusion injury in a porcine donation after circulatory death model with ex vivo lung perfusion evaluation. Transpl Int 2017; 29:1237-1246. [PMID: 27514498 DOI: 10.1111/tri.12823] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/27/2016] [Accepted: 07/28/2016] [Indexed: 02/05/2023]
Abstract
Donation after circulatory death (DCD) is being used to increase the number of transplantable organs. The role and timing of steroids in DCD donation and ex vivo lung perfusion (EVLP) has not been thoroughly investigated. In this study, we investigated the effect of steroids on warm ischemic injury in a porcine model (n = 6/group). Following cardiac arrest, grafts were left untouched in the donor (90-min warm ischemia). Graft function was assessed after 6 h of EVLP. In the MP group, 500 mg methylprednisolone was given prior to cardiac arrest and during EVLP. In the CONTR group, no steroids were added. Median lung compliance (13 ml/cmH2 0) was significantly better preserved in the CONTR group than in the MP group (30.5 ml/cmH2 0). Also, median wet-to-dry weight (6.11 vs. 6.94) and CT density (182.5 vs. 352.9 g/l) were significantly better in the MP group than in the CONTR group, respectively. There was no difference in oxygenation and pulmonary vascular resistance. Perfusate cytokine analysis showed a significant reduction in IL-1β, IL-8, IFN-α, IL-10, TNF-α, and IFN-γ in MP. Cytokines in bronchoalveolar lavage were not decreased except for IFN-gamma. We demonstrated that warm ischemic injury in DCD donation can be attenuated by steroids when given prior to warm ischemia and during EVLP. Ethical context of donor preconditioning should be discussed further.
Collapse
Affiliation(s)
- An Martens
- Laboratory of Anesthesiology and Algology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium.,Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Marc Boada
- Laboratory of Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium.,Lung Transplant Unit, Laboratory of Pneumology, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Stijn E Verleden
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium.,Lung Transplant Unit, Laboratory of Pneumology, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Robin Vos
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium.,Lung Transplant Unit, Laboratory of Pneumology, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Geert M Verleden
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium.,Lung Transplant Unit, Laboratory of Pneumology, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Eric K Verbeken
- Department of Histopathology, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium.,Laboratory of Experimental Thoracic Surgery, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy (Rega Institute), Department of Microbiology and Immunology, Katholieke University Leuven, Leuven, Belgium
| | - Sandra Claes
- Laboratory of Virology and Chemotherapy (Rega Institute), Department of Microbiology and Immunology, Katholieke University Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Laboratory of Anesthesiology and Algology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium. .,Leuven Lung Transplant Unit, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
An Update on Ex Vivo Lung Perfusion in Pulmonary Transplantation. CURRENT SURGERY REPORTS 2017. [DOI: 10.1007/s40137-017-0171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Kinaschuk K, Nagendran J. Improving long-term survival by preventing early complications after lung transplantation: Can we prevent ripples by keeping pebbles out of the water? J Thorac Cardiovasc Surg 2016; 151:1181-2. [PMID: 26832212 DOI: 10.1016/j.jtcvs.2015.12.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Katie Kinaschuk
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, Alberta Health Services, University of Alberta, Edmonton, Alberta, Canada
| | - Jayan Nagendran
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, Alberta Health Services, University of Alberta, Edmonton, Alberta, Canada; Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada; Canadian National Transplant Research Program, Edmonton, Alberta, Canada.
| |
Collapse
|
12
|
Vasanthan V, Nagendran J. Compliance trumps oxygenation: Predicting quality with ex vivo lung perfusion. J Thorac Cardiovasc Surg 2015; 150:1378-9. [PMID: 26242840 DOI: 10.1016/j.jtcvs.2015.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Vishnu Vasanthan
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; the Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada; the Alberta Transplant Institute, Edmonton, Alberta, Canada; and the Canadian National Translant Research Program, Edmonton, Alberta, Canada
| | - Jayan Nagendran
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; the Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada; the Alberta Transplant Institute, Edmonton, Alberta, Canada; and the Canadian National Translant Research Program, Edmonton, Alberta, Canada.
| |
Collapse
|