1
|
Dufwenberg MA, Garfinkel AR, Greenhill M, Garewal A, Larson MC. Cerebrospinal fluid flushing as a means of neuroprotection. Front Neurosci 2023; 17:1288790. [PMID: 38192514 PMCID: PMC10773678 DOI: 10.3389/fnins.2023.1288790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
Central nervous system (CNS) injury or disease states are often difficult to treat due to the closed system of the dura mater/blood-brain barrier and the bony skull and vertebrae. The closed system results in at least partial containment of any pro-inflammatory molecules, pathogens, or toxic byproducts in the case of brain or spinal cord lesions, which can result in a destructive feedback loop. Cervical-approach access techniques (lateral C1-C2, suboccipital and lateral atlanto-occipital space punctures) are less-common methods of cerebrospinal fluid (CSF) sampling due to the relative ease and safety of lumbar spinal taps. However, with improved image-guidance, these cervical-level CSF access points are still useful when there are certain contraindications and difficulties when attempting to sample the CSF via the typical lumbar spinal approach. With the advent of microcatheters and minimally invasive techniques, combined with body fluid filtration technology, the question arises: could dual microcatheters be introduced for inflow and outflow of purified or artificial CSF to break the destructive feedback loop and thus diminish CNS damage?. We hypothesize that intrathecal spinal catheters could be placed in 2 positions (e.g., via a cervical route and the typical lumbar spinal route) to allow for both an input and output to more effectively filter or "flush" the CSF. This could have broad implications in the treatment of strokes, traumatic brain or spinal cord injury, infections, autoimmune diseases, and even malignancies within the CNS-in short, any disease with abnormalities detectable in the CSF.
Collapse
Affiliation(s)
| | - Alec R. Garfinkel
- Department of Radiology, California Northstate University, Elk Grove, CA, United States
- HCA Florida Brandon Hospital, Brandon, FL, United States
| | - Mark Greenhill
- Department of Radiology, University of Arizona, Tucson, AZ, United States
| | - Armand Garewal
- Department of Radiology, University of California, Davis, Davis, CA, United States
| | - Michael Craig Larson
- Department of Radiology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
2
|
Czarniak N, Kamińska J, Matowicka-Karna J, Koper-Lenkiewicz OM. Cerebrospinal Fluid-Basic Concepts Review. Biomedicines 2023; 11:biomedicines11051461. [PMID: 37239132 DOI: 10.3390/biomedicines11051461] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cerebrospinal fluid plays a crucial role in protecting the central nervous system (CNS) by providing mechanical support, acting as a shock absorber, and transporting nutrients and waste products. It is produced in the ventricles of the brain and circulates through the brain and spinal cord in a continuous flow. In the current review, we presented basic concepts related to cerebrospinal fluid history, cerebrospinal fluid production, circulation, and its main components, the role of the blood-brain barrier and the blood-cerebrospinal fluid barrier in the maintenance of cerebrospinal fluid homeostasis, and the utility of Albumin Quotient (QAlb) evaluation in the diagnosis of CNS diseases. We also discussed the collection of cerebrospinal fluid (type, number of tubes, and volume), time of transport to the laboratory, and storage conditions. Finally, we briefly presented the role of cerebrospinal fluid examination in CNS disease diagnosis of various etiologies and highlighted that research on identifying cerebrospinal fluid biomarkers indicating disease presence or severity, evaluating treatment effectiveness, and enabling understanding of pathogenesis and disease mechanisms is of great importance. Thus, in our opinion, research on cerebrospinal fluid is still necessary for both the improvement of CNS disease management and the discovery of new treatment options.
Collapse
Affiliation(s)
- Natalia Czarniak
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | | |
Collapse
|
3
|
Afshari R, Akhavan O, Hamblin MR, Varma RS. Review of Oxygenation with Nanobubbles: Possible Treatment for Hypoxic COVID-19 Patients. ACS APPLIED NANO MATERIALS 2021; 4:11386-11412. [PMID: 37556289 PMCID: PMC8565459 DOI: 10.1021/acsanm.1c01907] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/12/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus disease (COVID-19) pandemic, which has spread around the world, caused the death of many affected patients, partly because of the lack of oxygen arising from impaired respiration or blood circulation. Thus, maintaining an appropriate level of oxygen in the patients' blood by devising alternatives to ventilator systems is a top priority goal for clinicians. The present review highlights the ever-increasing application of nanobubbles (NBs), miniature gaseous vesicles, for the oxygenation of hypoxic patients. Oxygen-containing NBs can exert a range of beneficial physiologic and pharmacologic effects that include tissue oxygenation, as well as tissue repair mechanisms, antiinflammatory properties, and antibacterial activity. In this review, we provide a comprehensive survey of the application of oxygen-containing NBs, with a primary focus on the development of intravenous platforms. The multimodal functions of oxygen-carrying NBs, including antimicrobial, antiinflammatory, drug carrying, and the promotion of wound healing are discussed, including the benefits and challenges of using NBs as a treatment for patients with acute hypoxemic respiratory failure, particularly due to COVID-19.
Collapse
Affiliation(s)
- Ronak Afshari
- Department of Physics, Sharif University
of Technology, P.O. Box 11155-9161, Tehran 14588-89694,
Iran
| | - Omid Akhavan
- Department of Physics, Sharif University
of Technology, P.O. Box 11155-9161, Tehran 14588-89694,
Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science,
University of Johannesburg, Doornfontein 2028, South
Africa
| | - Rajender S. Varma
- Regional Center of Advanced Technologies and Materials,
Czech Advanced Technology and Research Institute, Palacky
University, Šlechtitelů 27, Olomouc 78371, Czech
Republic
| |
Collapse
|
4
|
Voss LJ, Plouviez M, Whittle N. Microalgae-based photosynthetic strategy for oxygenating avascularised mouse brain tissue - An in vitro proof of concept study. Brain Res 2021; 1768:147585. [PMID: 34289380 DOI: 10.1016/j.brainres.2021.147585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Hypoxic brain injury is a leading cause of loss of quality of life globally for which there are currently no effective treatments. There has been increasing interest in incorporating photosynthesising agents into hypoxic tissue as a mechanism for in situ oxygen delivery, independent of vascular perfusion. To date this has not been tested in the brain. The oxygen production capacity of Chlamydomonas reinhardtii microalgal cultures was measured in artificial cerebrospinal fluid (aCSF) in benchtop assays and in cortical slices in situ. Cortical slice function was quantified by measuring the length, frequency and amplitude of seizure-like event (SLE) activity - in conventionally oxygenated aCSF, C. reinhardtii cultures, unoxygenated and deoxygenated aCSF. The possibility of direct toxic algal effects was investigated by exposing slices to cultures for 5 h. An oxygen level of 25 mg.L-1 was achieved with C. reinhardtii in no-Mg aCSF. Slice SLE function was preserved in C. reinhardtii, without the need for supplemental oxygen. In contrast, functional parameters deteriorated in unoxygenated and deoxygenated aCSF. In the former, there was a 66% reduction in SLE frequency and a 37% reduction in event amplitude. In the latter, SLE activity ceased completely. No toxic algae effects were seen in slices exposed to cultures for 5 h. These results confirm that C. reinhardtii oxygenation of aCSF can sustain cortical network activity - without tissue toxicity for the normal lifespan of an acute cortical slice. This study shows promise for the concept of photosynthesis as a mechanism for providing oxygen to rescue ischaemic avascularised brain tissue.
Collapse
Affiliation(s)
- Logan J Voss
- Anaesthesia Department, Waikato District Health Board, Hamilton, New Zealand.
| | - Maxence Plouviez
- Department of Chemical and Bioprocess Engineering, Massey University, Palmerston North, New Zealand
| | - Nicola Whittle
- Anaesthesia Department, Waikato District Health Board, Hamilton, New Zealand
| |
Collapse
|
5
|
Cerebrospinal fluid oxygen optimisation for rescue of metabolically challenged in vitro cortical brain tissue. IBRO Rep 2020; 9:302-309. [PMID: 33235940 PMCID: PMC7670121 DOI: 10.1016/j.ibror.2020.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/30/2020] [Indexed: 11/23/2022] Open
Abstract
Hypoxic-ischaemic brain injury is a major cause of morbidity and mortality internationally. Using an in vitro isolated cortex model, this study investigated the optimal cerebrospinal fluid oxygenation parameters for rescuing metabolically challenged cortical tissue. In particular, we asked whether maximizing oxygen content with oxygen nanobubbles could support improved tissue recovery. Mouse cortical slices were metabolically starved, followed by recovery in artificial cerebrospinal fluid (aCSF) containing different levels of dissolved oxygen ranging from mean(SD) 2(0.5) to 39(1.0) mg/L; with and without oxygen nanobubbles. Tissue recovery was assessed by quantifying and comparing the amplitude, length, high frequency content and event frequency of seizure-like events generated in no-magnesium aCSF at the beginning and end of the protocol. In general, there was improved recovery with increasing oxygen content up to 25-34 mg/L. The outcome of slices recovered in nanobubbled aCSF was no different to conventionally oxygenated slices with similar dissolved oxygen content. Dissolved oxygen content above 34 mg/L afforded no additional benefit. In conclusion, aCSF dissolved oxygen content of approximately 30 mg/L is optimal for cortical tissue recovery from metabolic starvation, which is easily achievable using conventional oxygenation methods. Oxygen in the form of nanobubbles does not appear to be readily available for tissue oxidative processes in this model.
Collapse
|
6
|
Yoshida K, Ikegami Y, Obara S, Sato K, Murakawa M. Investigation of anti-inflammatory effects of oxygen nanobubbles in a rat hydrochloric acid lung injury model. Nanomedicine (Lond) 2020; 15:2647-2654. [PMID: 33103952 DOI: 10.2217/nnm-2020-0338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the anti-inflammatory effect of oxygen nanobubbles (ONBs) in an acute lung injury rat model. Materials & methods: In a rat hydrochloric acid lung injury model, ONB fluid was administered intravenously in the ONB group (n = 6) and normal saline was administered in the control group (n = 6). 4 h later, arterial partial pressure of oxygen (PaO2), mean arterial pressure and plasma inflammatory cytokines were measured. Results: There were no significant differences in the PaO2, mean arterial pressure or TNF-α and IL-6 levels between the two groups. Conclusions: No anti-inflammatory effect could be confirmed at the present ONB dose in the rat model of acute lung injury.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Department of Anesthesiology, Fukushima Medical University School of Medicine, Fukushima 960-1247, Japan
| | - Yukihiro Ikegami
- Department of Emergency, Toyokawa City Hospital, Aichi 442-8561, Japan
| | - Shinju Obara
- Department of Anesthesiology, Fukushima Medical University School of Medicine, Fukushima 960-1247, Japan
| | - Keiko Sato
- Department of Anesthesiology, Fukushima Medical University School of Medicine, Fukushima 960-1247, Japan
| | - Masahiro Murakawa
- Department of Anesthesiology, Fukushima Medical University School of Medicine, Fukushima 960-1247, Japan
| |
Collapse
|
7
|
Panthee N, Ono M, Yamamoto T, Ikemura M, Tanaka T, Itoda Y, Suzuki H. Evaluation of spinal cord protective threshold of serum memantine, an NMDA receptor antagonist, in a rabbit model of paraplegia. Indian J Thorac Cardiovasc Surg 2020; 36:598-607. [PMID: 33100621 DOI: 10.1007/s12055-020-01026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 11/27/2022] Open
Abstract
Purpose To evaluate the threshold of serum memantine for prevention of spinal cord injury (SCI) in a rabbit paraplegic model. Methods Forty-two New Zealand white rabbits were divided into 7 groups. Preoperatively, oral memantine was given starting from 60 mg OD for 7 days in the initial group, then reducing the dose and/or duration to 60 mg OD for 5 days, 30 mg OD for 5 days, 30 mg OD for 3 days, 15 mg OD for 3 days, 30 mg single dose, and 60 mg single dose, in subsequent 6 groups. A paraplegic model was created by clamping both infrarenal aorta and inferior vena cava (IVC) for 45 min. Motor evoked potentials (MEPs), modified Tarlov score (0-5), serum memantine concentration, and histopathology of the spinal cord were evaluated. Results Half of all rabbits (21/42) showed spinal protection. Receiver operating characteristic (ROC) curve analysis showed serum level of 4.5 ng/ml as a cutoff value for spinal protection (sensitivity 86%, specificity 62%, area under the curve (AUC) 0.785, P = .002). Sixteen rabbits had serum level ≥ 4.5 ng/ml (group A), with 26 rabbits having < 4.5 ng/ml (group B). Further comparison was done between groups A and B. The mean modified Tarlov score at 6, 24, 48, and 72 h was 4.5 ± 0.9 and 2.4 ± 1.6, in groups A and B, respectively (P < .001). The modified Tarlov score showed positive correlation with serum memantine level (Spearman's rho = 0.618, P = .01). Results of MEP and histopathology were significantly better for group A. Conclusions We showed that memantine is protective against SCI at serum levels ≥ 4.5 ng/ml in a rabbit model; thus, it can be a potential adjunct for spinal protection during thoracic/thoracoabdominal aortic surgeries.
Collapse
Affiliation(s)
- Nirmal Panthee
- Department of Cardiac Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Minoru Ono
- Department of Cardiac Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Takehito Yamamoto
- Department of Pharmacy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Masako Ikemura
- Department of Neuropathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Tsuruhito Tanaka
- Department of Cardiac Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Yoshifumi Itoda
- Department of Cardiac Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
8
|
Robinson NB, Gaudino M. Commentary: Nanobubbles-A promising technology or another therapy stuck in the laboratory? JTCVS OPEN 2020; 3:12-13. [PMID: 36003869 PMCID: PMC9390441 DOI: 10.1016/j.xjon.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 10/25/2022]
Affiliation(s)
- N. Bryce Robinson
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY
| | - Mario Gaudino
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY
| |
Collapse
|
9
|
Naganuma M, Saiki Y, Kanda K, Akiyama M, Adachi O, Horii A, Saiki Y. Nanobubble technology to treat spinal cord ischemic injury. JTCVS OPEN 2020; 3:1-11. [PMID: 36003872 PMCID: PMC9390594 DOI: 10.1016/j.xjon.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
Abstract
Background Spinal cord ischemic injury is a severe complication of aortic surgery. We hypothesized that cerebrospinal fluid (CSF) oxygenation with nanobubbles after reperfusion could ameliorate spinal cord ischemic injury. Methods Twenty white Japanese rabbits were categorized into 4 groups of 5 rabbits each: sham group, with balloon catheter insertion into the aorta; ischemia group, with spinal cord ischemic injury by abdominal aortic occlusion; nonoxygenated group, with nonoxygenated artificial CSF irrigation after spinal cord ischemic injury; and oxygenated group, with oxygenated artificial CSF irrigation after spinal cord ischemic injury. At 48 hours after spinal cord ischemic injury, the modified Tarlov score to reflect hind limb movement was evaluated. The spinal cord was histopathologically examined by counting anterior horn cells, and microarray and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analyses were performed. Results The oxygenated group showed improved neurologic function compared with the ischemia and nonoxygenated groups (P < .01 and P = .019, respectively). Anterior horn neuron prevention in the sham, nonoxygenated, and oxygenated groups was confirmed (mean modified Tarlov score: sham, 9.2 ± 1.9; nonoxygenated, 10.2 ± 2.2; oxygenated, 10.4 ± 2.2; ischemia, 2.7 ± 2.7). Microarray analysis identified 644 genes with twofold or greater increased signals between the ischemia and sham groups. Thirty-three genes related to inflammatory response were enriched among genes differentially expressed between the oxygenated and ischemia groups. Interleukin (IL)-6 and tumor necrosis factor (TNF) expression levels were significantly lower in the oxygenated group compared with the ischemia group, while qRT-PCR showed lower IL-6 and TNF expression levels in the oxygenated group compared with the ischemia group (P < .05). Conclusions CSF oxygenation with nanobubbles after reperfusion can ameliorate spinal cord ischemic injury and suppress inflammatory responses in the spinal cord.
Collapse
|
10
|
DeAnda A, Roughneen PT. Spinal Cord Collateral Pathways-The Road Not Taken. Semin Thorac Cardiovasc Surg 2017; 28:388-389. [PMID: 28043448 DOI: 10.1053/j.semtcvs.2016.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Abe DeAnda
- Division of Cardiothoracic Surgery, University of Texas Medical Branch, Galveston, Texas.
| | - Patrick T Roughneen
- Division of Cardiothoracic Surgery, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
11
|
Roughneen PT, DeAnda A. Bubble, bubble, toil and trouble? J Thorac Cardiovasc Surg 2016; 152:1410-1411. [PMID: 27239010 DOI: 10.1016/j.jtcvs.2016.04.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Patrick T Roughneen
- Division of Cardiothoracic Surgery, Department of Surgery, University of Texas Medical Branch, Galveston, Tex
| | - Abe DeAnda
- Division of Cardiothoracic Surgery, Department of Surgery, University of Texas Medical Branch, Galveston, Tex.
| |
Collapse
|