1
|
Cebull HL, Aremu OO, Kulkarni RS, Zhang SX, Samuels P, Jermy S, Ntusi NA, Goergen CJ. Simulating Subject-Specific Aortic Hemodynamic Effects of Valvular Lesions in Rheumatic Heart Disease. J Biomech Eng 2023; 145:111003. [PMID: 37470483 PMCID: PMC10405283 DOI: 10.1115/1.4063000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Rheumatic heart disease (RHD) is a neglected tropical disease despite the substantial global health burden. In this study, we aimed to develop a lower cost method of modeling aortic blood flow using subject-specific velocity profiles, aiding our understanding of RHD's consequences on the structure and function of the ascending aorta. Echocardiography and cardiovascular magnetic resonance (CMR) are often used for diagnosis, including valve dysfunction assessments. However, there is a need to further characterize aortic valve lesions to improve treatment options and timing for patients, while using accessible and affordable imaging strategies. Here, we simulated effects of RHD aortic valve lesions on the aorta using computational fluid dynamics (CFD). We hypothesized that inlet velocity distribution and wall shear stress (WSS) will differ between RHD and non-RHD individuals, as well as between subject-specific and standard Womersley velocity profiles. Phase-contrast CMR data from South Africa of six RHD subjects with aortic stenosis and/or regurgitation and six matched controls were used to estimate subject-specific velocity inlet profiles and the mean velocity for Womersley profiles. Our findings were twofold. First, we found WSS in subject-specific RHD was significantly higher (p < 0.05) than control subject simulations, while Womersley simulation groups did not differ. Second, evaluating spatial velocity differences (ΔSV) between simulation types revealed that simulations of RHD had significantly higher ΔSV than non-RHD (p < 0.05), these results highlight the need for implementing subject-specific input into RHD CFD, which we demonstrate how to accomplish through accessible methods.
Collapse
Affiliation(s)
- Hannah L. Cebull
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322
| | - Olukayode O. Aremu
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Observatory7925, South Africa
| | - Radhika S. Kulkarni
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Samuel X. Zhang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Petronella Samuels
- Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory 7925, South Africa
| | - Stephen Jermy
- Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory 7925, South Africa
| | - Ntobeko A.B. Ntusi
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; Division of Cardiology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Observatory 7925, South Africa; South African Medical Research Council Extramural Unit on the Intersection of Noncommunicable Diseases and Infectious Diseases, Cape Town 7925, South Africa
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907; Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
2
|
Cebull HL, Rayz VL, Goergen CJ. Recent Advances in Biomechanical Characterization of Thoracic Aortic Aneurysms. Front Cardiovasc Med 2020; 7:75. [PMID: 32478096 PMCID: PMC7235347 DOI: 10.3389/fcvm.2020.00075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is a focal enlargement of the thoracic aorta, but the etiology of this disease is not fully understood. Previous work suggests that various genetic syndromes, congenital defects such as bicuspid aortic valve, hypertension, and age are associated with TAA formation. Though occurrence of TAAs is rare, they can be life-threatening when dissection or rupture occurs. Prevention of these adverse events often requires surgical intervention through full aortic root replacement or implantation of endovascular stent grafts. Currently, aneurysm diameters and expansion rates are used to determine if intervention is warranted. Unfortunately, this approach oversimplifies the complex aortopathy. Improving treatment of TAAs will likely require an increased understanding of the biological and biomechanical factors contributing to the disease. Past studies have substantially contributed to our knowledge of TAAs using various ex vivo, in vivo, and computational methods to biomechanically characterize the thoracic aorta. However, any singular approach typically focuses on only material properties of the aortic wall, intra-aneurysmal hemodynamics, or in vivo vessel dynamics, neglecting combinatorial factors that influence aneurysm development and progression. In this review, we briefly summarize the current understanding of TAA causes, treatment, and progression, before discussing recent advances in biomechanical studies of TAAs and possible future directions. We identify the need for comprehensive approaches that combine multiple characterization methods to study the mechanisms contributing to focal weakening and rupture. We hope this summary and analysis will inspire future studies leading to improved prediction of thoracic aneurysm progression and rupture, improving patient diagnoses and outcomes.
Collapse
Affiliation(s)
- Hannah L Cebull
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Vitaliy L Rayz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|