1
|
Hobin K, Abou-Zeid L, Mendizabal IB, Van Vrekhem T, Miatton M, D'Haeze B, Scarioni M, Van Langenhove T, Vanhaecke F. Investigation of the concentration and isotopic composition of Cu, Fe and Zn in human biofluids in the context of Alzheimer's disease via tandem and multi-collector inductively coupled plasma-mass spectrometry. J Trace Elem Med Biol 2024; 86:127515. [PMID: 39241488 DOI: 10.1016/j.jtemb.2024.127515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Studies on essential trace elements in the context of Alzheimer's disease (AD) concluded that Cu, Fe and Zn interact with amyloid-β, accelerating plaque formation in the brain. Additionally, Cu and Fe in the vicinity of plaques produce reactive oxygen species (ROS) resulting in oxidative stress, whereas Zn plays a role in the antioxidant defence as a co-factor for antioxidants. In this work, the Cu, Fe and Zn concentrations and isotope ratios were determined in whole blood, blood serum and cerebrospinal fluid of 10 patients diagnosed with AD and 8 control individuals, using tandem (ICP-MS/MS) and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS), respectively. In whole blood and blood serum of AD patients, a heavier Cu isotopic composition was observed (significant for whole blood only) compared to controls. Albumin levels in cerebrospinal fluid tend to increase with age, which could indicate an increased leakiness of the blood-brain barrier. In cerebrospinal fluid, a large variability was observed for the Cu and Fe isotope ratios, potentially resulting from that leakiness at the blood-brain barrier. Therefore, potential effects of AD on the concentration and isotopic composition of essential elements in cerebrospinal fluid related to amyloid-β formation could be hidden. Finally, in blood serum, Zn, urea and creatinine concentrations showed an increase with age and showed a significant difference between sexes.
Collapse
Affiliation(s)
- Kasper Hobin
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, Ghent 9000, Belgium
| | - Lana Abou-Zeid
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, Ghent 9000, Belgium
| | - Iker Basabe Mendizabal
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, Ghent 9000, Belgium
| | - Tineke Van Vrekhem
- Cognitive Center, Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Marijke Miatton
- Cognitive Center, Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Bregje D'Haeze
- Cognitive Center, Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Marta Scarioni
- Cognitive Center, Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Tim Van Langenhove
- Cognitive Center, Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, Ghent 9000, Belgium.
| |
Collapse
|
2
|
Rodiouchkina K, Rodushkin I, Goderis S, Vanhaecke F. Longitudinal isotope ratio variations in human hair and nails. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152059. [PMID: 34863743 DOI: 10.1016/j.scitotenv.2021.152059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Due to the straightforward and non-invasive sampling, ease of transport and long-term storage and access to time-resolved information, determination of element concentrations and isotope ratios in hair and nails finds increasing use. Multi-isotopic information preserved in keratinous tissues allows one to reveal dietary, physiological and environmental influences, but progress in this area is still limited by complicated and time-consuming analytical procedures and challenges in accuracy assessment. In this study, longitudinal distributions of δ34S, 87Sr/86Sr, 207,208Pb/206Pb, δ66Zn, δ56Fe, δ65Cu, δ26Mg, and δ114Cd were obtained for hair and nails collected from nine subjects with different age, biological sex, diet and/or place of residence. For S and Zn, the distribution along hair strands revealed a trend towards a heavier isotopic signature from the proximal to the distal end, with a maximum difference within the hair of a single subject of 1.2‰ (Δ34S) and 0.4‰ (Δ66Zn). For Fe, Cu, Mg and Cd, a shift towards either a lighter (Cu) or heavier (Fe, Mg and Cd) isotopic composition is accompanied by increasing concentration towards the distal hair end, indicating possible isotope fractionation during deposition or external contamination with a different isotopic composition. Pb and Sr isotope ratios are relatively stable throughout the hair strands despite notable concentration increases towards the distal end, likely reflecting external contamination. The isotopic composition of Sr points to tap water as a probable main source, explaining the relative stability of the ratio for individuals from the same geographical location. For Pb, isotopic compositions suggest tap water and/or indoor dust as possible sources. Similar δ34S, 87Sr/86Sr, 207,208Pb/206Pb, δ66Zn, δ56Fe, and δ65Cu observed for hair, fingernails and toenails sampled from the same individual suggest that keratinous tissues are conservative receivers of internal and external inputs and can be used complementary. Seasonal variation in δ34S, 207,208Pb/206Pb, and δ65Cu was observed for fingernails.
Collapse
Affiliation(s)
- Katerina Rodiouchkina
- Ghent University, Department of Chemistry, Atomic and Mass Spectrometry (A&MS) research group, Campus Sterre, Krijgslaan 281 - S12, 9000 Ghent, Belgium
| | - Ilia Rodushkin
- ALS Scandinavia AB, ALS Laboratory Group, Aurorum 10, S-977 75 Luleå, Sweden
| | - Steven Goderis
- Vrije Universiteit Brussel, Department of Chemistry, Analytical, Environmental and Geo-Chemistry (AMGC) research group, Pleinlaan 2, 1050 Brussels, Belgium
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic and Mass Spectrometry (A&MS) research group, Campus Sterre, Krijgslaan 281 - S12, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Schilling K, Harris AL, Halliday AN, Schofield CJ, Sheldon H, Haider S, Larner F. Investigations on Zinc Isotope Fractionation in Breast Cancer Tissue Using in vitro Cell Culture Uptake-Efflux Experiments. Front Med (Lausanne) 2022; 8:746532. [PMID: 35127740 PMCID: PMC8811157 DOI: 10.3389/fmed.2021.746532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Zinc (Zn) accumulates in breast cancer tumors compared to adjacent healthy tissue. Clinical samples of breast cancer tissue show light Zn isotopic compositions (δ66Zn) relative to healthy tissue. The underlying mechanisms causing such effects are unknown. To investigate if the isotopic discrimination observed for in vivo breast cancer tissue samples can be reproduced in vitro, we report isotopic data for Zn uptake-efflux experiments using a human breast cancer cell line. MDA-MB-231 cell line was used as a model for triple receptor negative breast cancer. We determined Zn isotope fractionation for Zn cell uptake (Δ66Znuptake) and cell efflux (Δ66Znefflux) using a drip-flow reactor to enable comparison with the in vivo environment. The MDA-MB-231 cell line analyses show Zn isotopic fractionations in an opposite direction to those observed for in vivo breast cancer tissue. Uptake of isotopically heavy Zn (Δ66Znuptake = +0.23 ± 0.05‰) is consistent with transport via Zn transporters (ZIPs), which have histidine-rich binding sites. Zinc excreted during efflux is isotopically lighter than Zn taken up by the cells (Δ66Znefflux = -0.35 ± 0.06‰). The difference in Zn isotope fractionation observed between in vitro MDA-MB-231 cell line experiments and in vivo breast tissues might be due to differences in Zn transporter levels or intercellular Zn storage (endoplasmic reticulum and/or Zn specific vesicles); stromal cells, such as fibroblasts and immune cells. Although, additional experiments using other human breast cancer cell lines (e.g., MCF-7, BT-20) with varying Zn protein characteristics are required, the results highlight differences between in vitro and in vivo Zn isotope fractionation.
Collapse
Affiliation(s)
- Kathrin Schilling
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, United States
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - Adrian L. Harris
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Alex N. Halliday
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, United States
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Helen Sheldon
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Syed Haider
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Fiona Larner
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Kubik E, Moynier F, Paquet M, Siebert J. Iron Isotopic Composition of Biological Standards Relevant to Medical and Biological Applications. Front Med (Lausanne) 2021; 8:696367. [PMID: 34746169 PMCID: PMC8563829 DOI: 10.3389/fmed.2021.696367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Iron isotopes are fractionated by multiple biological processes, which offers a novel opportunity to study iron homeostasis. The determination of Fe isotope composition in biological samples necessitates certified biological reference materials with known Fe isotopic signature in order to properly assess external reproducibility and data quality between laboratories. We report the most comprehensive study on the Fe isotopic composition for widely available international biological reference materials. They consist of different terrestrial and marine animal organs (bovine, porcine, tuna, and mussel) as well as apple leaves and human hair (ERC-CE464, NIST1515, ERM-DB001, ERM-BB186, ERM-BB184, ERM-CE196, BCR668, ERM-BB185, ERM-BB124). Previously measured Fe isotopic compositions were available for only two of these reference materials (ERC-CE464 tuna fish and ERM-BB186 pig kidney) and these literature data are in excellent agreement with our data. The Fe isotopic ratios are reported as the permil deviation of the 56Fe/54Fe ratio from the IRMM-014 standard. All reference materials present δ56Fe ranging from −2.27 to −0.35%0. Combined with existing data, our results suggest that animal models could provide useful analogues of the human body regarding the metabolic pathways affecting Fe isotopes, with many potential applications to medicine.
Collapse
Affiliation(s)
- Edith Kubik
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Frédéric Moynier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France.,Institut Universitaire de France, Paris, France
| | - Marine Paquet
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Julien Siebert
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
5
|
Albalat E, Cavey T, Leroyer P, Ropert M, Balter V, Loréal O. H fe Gene Knock-Out in a Mouse Model of Hereditary Hemochromatosis Affects Bodily Iron Isotope Compositions. Front Med (Lausanne) 2021; 8:711822. [PMID: 34722560 PMCID: PMC8554230 DOI: 10.3389/fmed.2021.711822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Hereditary hemochromatosis is a genetic iron overload disease related to a mutation within the HFE gene that controls the expression of hepcidin, the master regulator of systemic iron metabolism. The natural stable iron isotope composition in whole blood of control subjects is different from that of hemochromatosis patients and is sensitive to the amount of total iron removed by the phlebotomy treatment. The use of stable isotopes to unravel the pathological mechanisms of iron overload diseases is promising but hampered by the lack of data in organs involved in the iron metabolism. Here, we use Hfe -/- mice, a model of hereditary hemochromatosis, to study the impact of the knock-out on iron isotope compositions of erythrocytes, spleen and liver. Iron concentration increases in liver and red blood cells of Hfe -/- mice compared to controls. The iron stable isotope composition also increases in liver and erythrocytes, consistent with a preferential accumulation of iron heavy isotopes in Hfe -/- mice. In contrast, no difference in the iron concentration nor isotope composition is observed in spleen of Hfe -/- and control mice. Our results in mice suggest that the observed increase of whole blood isotope composition in hemochromatosis human patients does not originate from, but is aggravated by, bloodletting. The subsequent rapid increase of whole blood iron isotope composition of treated hemochromatosis patients is rather due to the release of hepatic heavy isotope-enriched iron than augmented iron dietary absorption. Further research is required to uncover the iron light isotope component that needs to balance the accumulation of hepatic iron heavy isotope, and to better understand the iron isotope fractionation associated to metabolism dysregulation during hereditary hemochromatosis.
Collapse
Affiliation(s)
- Emmanuelle Albalat
- CNRS UMR 5276, LGL-TPE, ENS de Lyon, Université de Lyon, Villeurbanne, France
| | - Thibault Cavey
- INSERM, Univ Rennes, INRAe, UMR 1241, Plateforme AEM2, CHU Pontchaillou, Institut Nutrition Metabolisms et Cancer (NuMeCan), Rennes, France
| | - Patricia Leroyer
- INSERM, Univ Rennes, INRAe, UMR 1241, Plateforme AEM2, CHU Pontchaillou, Institut Nutrition Metabolisms et Cancer (NuMeCan), Rennes, France
| | - Martine Ropert
- INSERM, Univ Rennes, INRAe, UMR 1241, Plateforme AEM2, CHU Pontchaillou, Institut Nutrition Metabolisms et Cancer (NuMeCan), Rennes, France
| | - Vincent Balter
- CNRS UMR 5276, LGL-TPE, ENS de Lyon, Université de Lyon, Villeurbanne, France
| | - Olivier Loréal
- INSERM, Univ Rennes, INRAe, UMR 1241, Plateforme AEM2, CHU Pontchaillou, Institut Nutrition Metabolisms et Cancer (NuMeCan), Rennes, France
| |
Collapse
|
6
|
Boucher RD, Alavi SE, de Jong HN, Godfrey LV, Vogel ER. Stable isotope evidence (Fe, Cu) suggests that sex, but not aging is recorded in rhesus macaque (Macaca mulatta) bone. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:80-92. [PMID: 33973647 DOI: 10.1002/ajpa.24301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 03/25/2021] [Accepted: 04/17/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Here, we examine (1) if the sex-related differences in iron (Fe) and copper (Cu) isotope ratios, represented as δ56 Fe and δ65 Cu values, respectively observed in humans exist in bulk occipital bone and incisors of male and female non-human primates, and (2) if the variation of Fe and Cu isotope ratios, known to vary in human blood as a factor of age are similar in non-human primate bone. MATERIALS AND METHODS Isotope ratios were measured from the skeletal elements of 20 rhesus macaques (Macaca mulatta) with known life history traits. The metals were purified by column chromatography and their isotope ratios measured by MC-ICP-MS. Data were analyzed using generalized additive models (GAM). RESULTS When accounting for age and sex independently, we found a significant relationship between δ65 Cu values and occipital bone, but not in incisors. There were no significant relationships observed between δ56 Fe values, occipital bone, or incisors. Similarly, there were no significant relationships observed between δ56 Fe values, δ65 Cu values, and age. DISCUSSION We suggest that Cu and Fe isotope ratios have the potential to be useful supplementary tools in future research in biological anthropology, but additional studies are needed to further verify the relationship between sex, age, δ65 Cu, and δ56 Fe values in primates.
Collapse
Affiliation(s)
- Renee D Boucher
- Department of Anthropology, University of California, Santa Cruz, California, USA.,Department of Anthropology, Rutgers University, New Brunswick, New Jersey, USA
| | - Shauhin E Alavi
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Constance, Germany
| | - Hylke N de Jong
- Department of Anthropology, Rutgers University, New Brunswick, New Jersey, USA
| | - Linda V Godfrey
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Erin R Vogel
- Department of Anthropology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Vanhaecke F, Costas‐Rodríguez M. High‐precision isotopic analysis of essential mineral elements: capabilities as a diagnostic/prognostic tool. VIEW 2020. [DOI: 10.1002/viw.20200094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Frank Vanhaecke
- Atomic & Mass Spectrometry – A&MS Research Unit, Department of Chemistry Ghent University Ghent Belgium
| | - Marta Costas‐Rodríguez
- Atomic & Mass Spectrometry – A&MS Research Unit, Department of Chemistry Ghent University Ghent Belgium
| |
Collapse
|
8
|
Sauzéat L, Costas-Rodríguez M, Albalat E, Mattielli N, Vanhaecke F, Balter V. Inter-comparison of stable iron, copper and zinc isotopic compositions in six reference materials of biological origin. Talanta 2020; 221:121576. [PMID: 33076122 DOI: 10.1016/j.talanta.2020.121576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 08/11/2020] [Indexed: 01/19/2023]
Abstract
There is a lack of certified reference materials with an organic matrix for which metal isotope ratios have been certified. Here, we have determined the iron, copper and zinc stable isotopic compositions for six reference materials of biological origin with diverse matrices, i.e. BCR-380R (whole milk), BCR-383 (beans), ERM-CE464 (tuna fish), SRM-1577c (bovine liver), DORM-4 (fish protein) and TORT-3 (lobster hepatopancreas) in three different labs. The concentrations for six major and sixteen trace elements, spanning almost four orders of magnitude, were also measured and the results obtained show an excellent agreement with certified values, demonstrating that the dissolution step was quantitative for all the standards. By taking literature data into account, 39 possible pair-wise comparisons of mean iron, copper and zinc isotopic values (δ values) could be made. Results of Tukey multiple comparisons of means yielded 11 significantly different pairs. Most of these differences are of the same order of magnitude as the estimated mean expanded uncertainties (U, k = 2) (±0.10‰, ±0.05‰, and ±0.05‰ for the δ56Fe, δ65Cu and δ66Zn values, respectively). The present inter-comparison study finally proposes nineteen new preferred values for the Cu, Zn and Fe isotopic compositions of six reference materials of biological origin.
Collapse
Affiliation(s)
- Lucie Sauzéat
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000, Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, F-63000, Clermont-Ferrand, France
| | - Marta Costas-Rodríguez
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium
| | | | - Nadine Mattielli
- Laboratoire G-Time, DGES, Université Libre de Bruxelles (ULB), Av. Roosevelt 50, CP 160/02, 1050, Brussels, Belgium
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 - S12, 9000, Ghent, Belgium
| | - Vincent Balter
- Univ Lyon, ENSL, Univ Lyon 1, CNRS, LGL-TPE, F-69007, Lyon, France.
| |
Collapse
|
9
|
Mahan B, Chung RS, Pountney DL, Moynier F, Turner S. Isotope metallomics approaches for medical research. Cell Mol Life Sci 2020; 77:3293-3309. [PMID: 32130428 PMCID: PMC11104924 DOI: 10.1007/s00018-020-03484-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022]
Abstract
Metallomics is a rapidly evolving field of bio-metal research that integrates techniques and perspectives from other "-omics" sciences (e.g. genomics, proteomics) and from research vocations further afield. Perhaps the most esoteric of this latter category has been the recent coupling of biomedicine with element and isotope geochemistry, commonly referred to as isotope metallomics. Over the course of less than two decades, isotope metallomics has produced numerous benchmark studies highlighting the use of stable metal isotope distribution in developing disease diagnostics-e.g. cancer, neurodegeneration, osteoporosis-as well as their utility in deciphering the underlying mechanisms of such diseases. These pioneering works indicate an enormous wealth of potential and provide a call to action for researchers to combine and leverage expertise and resources to create a clear and meaningful path forward. Doing so with efficacy and impact will require not only building on existing research, but also broadening collaborative networks, bolstering and deepening cross-disciplinary channels, and establishing unified and realizable objectives. The aim of this review is to briefly summarize the field and its underpinnings, provide a directory of the state of the art, outline the most encouraging paths forward, including their limitations, outlook and speculative upcoming breakthroughs, and finally to offer a vision of how to cultivate isotope metallomics for an impactful future.
Collapse
Affiliation(s)
- Brandon Mahan
- Earth and Environmental Sciences, James Cook University, Townsville, QLD, Australia.
- Department of Biomedical Research, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Roger S Chung
- Department of Biomedical Research, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dean L Pountney
- School of Medical Science, Griffith University, Southport, 4222, Australia
| | - Frédéric Moynier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238, Paris, France
| | - Simon Turner
- Thermo Fisher Isotope Development Hub, Department of Earth and Environmental Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
10
|
Liang YH, Huang KYA, Lee DC, Pang KN, Chen SH. High-precision iron isotope analysis of whole blood, erythrocytes, and serum in adults. J Trace Elem Med Biol 2020; 58:126421. [PMID: 31805477 DOI: 10.1016/j.jtemb.2019.126421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/13/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Iron isotopic composition serves as a biological indicator of Fe metabolism in humans. In the process of Fe metabolism, essential carriers of Fe circulate in the blood and pass through storage organs and intestinal absorptive tissues. This study aimed to establish an analytical method for high-precision Fe isotopic measurement, investigate Fe concentration and isotopic composition in different parts of whole blood, and explore the potential of Fe isotopic composition as an indicator for Fe status within individuals. ANALYTICAL METHODS A total of 23 clinically healthy Taiwanese adults of Han descent were enrolled randomly and Fe isotopic compositions of their whole blood, erythrocytes, and serum were measured. The Fe isotopic analysis was performed by Neptune Plus multiple-collector inductively coupled plasma mass spectrometry with double-spike technique. The precision and reproducibility of the Fe isotopic analysis were monitored by international biological and geological reference materials. MAIN FINDINGS High-precision Fe isotopic measurements were achieved alongside with high consistency in the isotopic data for well-characterized reference materials. The Fe isotopic signatures of whole blood and erythrocytes were resolvable from that of serum, where both whole blood and erythrocytes contained significantly lighter Fe isotopic compositions compared to the case of serum (P = 0.0296 and P = 0.0004, respectively). The δ56/54Fe value of the serum sample was 0.2‰ heavier on an average than those of whole blood or erythrocytes. This isotopic fractionation observed in different parts of whole blood may indicate redox processes involved in Fe cycling, e.g. erythrocyte production and Fe transportation. Moreover, the δ56/54Fe values of whole blood and serum significantly correlated with the hemoglobin level (P = 0.0126 and P = 0.0020, respectively), erythrocyte count (P = 0.0014 and P = 0.0005, respectively), and Mentzer index (P = 0.0055 and P = 0.0011, respectively), suggesting the Fe isotopic composition as an indicator of functional Fe status in healthy adults. The relationships between blood Fe isotopic compositions and relevant biodemographic variables were also examined. While the average Fe concentration of whole blood was significantly higher in males than in females (P = 0.0028), females exhibited a heavier Fe isotopic composition compared to that of males in whole blood (P = 0.0010) and serum (P < 0.0001). A significantly inverse correlation of the whole blood δ56/54Fe value with body mass index of individuals (P = 0.0095) was also observed. CONCLUSION The results presented herein reveal that blood Fe isotopic signature is consequentially linked to baseline erythrocyte parameters in individuals and is significantly affected by the gender and body mass index in the adult population. These findings support the role of Fe isotopic composition as an indicator for the variance of Fe metabolism among adult individuals and populations and warrant further study to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yu-Hsuan Liang
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuan-Ying A Huang
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan; School of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kwan-Nang Pang
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Hsiang Chen
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| |
Collapse
|
11
|
Sullivan K, Moore RET, Rehkämper M, Layton-Matthews D, Leybourne MI, Puxty J, Kyser TK. Postprandial zinc stable isotope response in human blood serum. Metallomics 2020; 12:1380-1388. [DOI: 10.1039/d0mt00122h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The post-meal redistribution of serum Zn to aid with nutrient metabolism is a non-fractionating process.
Collapse
Affiliation(s)
- Kaj Sullivan
- Department of Geological Sciences and Geological Engineering
- Queen's University
- Kingston
- Canada
- Department of Earth Science & Engineering
| | | | - Mark Rehkämper
- Department of Earth Science & Engineering
- Imperial College London
- London
- UK
| | - Daniel Layton-Matthews
- Department of Geological Sciences and Geological Engineering
- Queen's University
- Kingston
- Canada
| | - Matthew I. Leybourne
- Department of Geological Sciences and Geological Engineering
- Queen's University
- Kingston
- Canada
- McDonald Institute
| | - John Puxty
- Centre for Studies in Aging and Health
- Providence Care Hospital
- Kingston
- Canada
- Department of Medicine
| | - T. Kurt Kyser
- Department of Geological Sciences and Geological Engineering
- Queen's University
- Kingston
- Canada
| |
Collapse
|
12
|
Jaouen K, Pouilloux L, Balter V, Pons ML, Hublin JJ, Albarède F. Dynamic homeostasis modeling of Zn isotope ratios in the human body. Metallomics 2019; 11:1049-1059. [DOI: 10.1039/c8mt00286j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent research performed on volunteers and patients suggested that diet, health, and basal metabolic rates (BMR) are factors controlling the bodily Zn isotope compositions (isotopic homeostasis).
Collapse
Affiliation(s)
- Klervia Jaouen
- Max Planck Institute for Evolutionary Anthropology
- Department of Human Evolution
- 04103 Leipzig
- Germany
- Observatoire Midi Pyrénées
| | | | | | - Marie-Laure Pons
- Eberhard Karls University of Tübingen
- Isotope Geochemistry
- Department of Geosciences
- 72074 Tübingen
- Germany
| | - Jean-Jacques Hublin
- Max Planck Institute for Evolutionary Anthropology
- Department of Human Evolution
- 04103 Leipzig
- Germany
| | | |
Collapse
|
13
|
Tanaka YK, Hirata T. Stable Isotope Composition of Metal Elements in Biological Samples as Tracers for Element Metabolism. ANAL SCI 2018; 34:645-655. [PMID: 29887552 DOI: 10.2116/analsci.18sbr02] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stable isotope composition varies due to different reactivity or mobility among the isotopes. Various pioneering studies revealed that isotope fractionation is common for many elements, and it is now widely recognized that the stable isotope compositions of biometals can be used as new tracers for element metabolism. In this review, we summarize the recently published isotope compositions of iron (Fe), copper (Cu), zinc (Zn), and calcium (Ca) in various biological samples, including tissues from plants, animals, and humans. Discussions were carried out with respect to age, sex, organ, and the presence or absence of particular diseases for animals and humans. For Fe and Cu isotopes, changes in oxidation states generate large isotopic fractionation through the metabolism of those elements. Isotope composition of Zn greatly fractionates among tissues even without changes in oxidation state. Isotopic composition of Ca is a powerful tracer for the metabolism of Ca in bones. The review results suggest that the stable isotope compositions of the biometals can be used as effective markers for diagnostics of various kinds of diseases related to metabolic disorders.
Collapse
Affiliation(s)
- Yu-Ki Tanaka
- Geochemical Research Center, The University of Tokyo
| | | |
Collapse
|
14
|
Bondanese VP, Lamboux A, Simon M, Lafont JE, Albalat E, Pichat S, Vanacker JM, Telouk P, Balter V, Oger P, Albarède F. Hypoxia induces copper stable isotope fractionation in hepatocellular carcinoma, in a HIF-independent manner. Metallomics 2017; 8:1177-1184. [PMID: 27500357 DOI: 10.1039/c6mt00102e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, with increasing incidence worldwide. The unrestrained proliferation of tumour cells leads to tumour hypoxia which in turn promotes cancer aggressiveness. While changes in the concentration of copper (Cu) have long been observed upon cancerization, we have recently reported that the isotopic composition of copper is also altered in several types of cancer. In particular, we showed that in hepatocellular carcinoma, tumour tissue contains heavier copper compared to the surrounding parenchyma. However, the reasons behind such isotopic signature remained elusive. Here we show that hypoxia causes heavy copper enrichment in several human cell lines. We also demonstrate that this effect of hypoxia is pH, HIF-1 and -2 independent. Our data identify a previously unrecognized cellular process associated with hypoxia, and suggests that in vivo tumour hypoxia determines copper isotope fractionation in HCC and other solid cancers.
Collapse
Affiliation(s)
- Victor P Bondanese
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Aline Lamboux
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Melanie Simon
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Jérôme E Lafont
- Institute for Biology and Chemistry of Proteins, CNRS, UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard-Lyon 1 and University of Lyon, France
| | - Emmanuelle Albalat
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Sylvain Pichat
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Philippe Telouk
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Vincent Balter
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Philippe Oger
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Francis Albarède
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| |
Collapse
|
15
|
Albarede F, Télouk P, Balter V, Bondanese VP, Albalat E, Oger P, Bonaventura P, Miossec P, Fujii T. Medical applications of Cu, Zn, and S isotope effects. Metallomics 2017; 8:1056-1070. [PMID: 27513195 DOI: 10.1039/c5mt00316d] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review examines recent applications of stable copper, zinc and sulfur isotopes to medical cases and notably cancer. The distribution of the natural stable isotopes of a particular element among coexisting molecular species varies as a function of the bond strength, the ionic charge, and the coordination, and it also changes with kinetics. Ab initio calculations show that compounds in which a metal binds to oxygen- (sulfate, phosphate, lactate) and nitrogen-bearing moieties (histidine) favor heavy isotopes, whereas bonds with sulfur (cysteine, methionine) favor light isotopes. Oxidized cations (e.g., Cu(ii)) and low coordination numbers are expected to favor heavy isotopes relative to their reduced counterparts (Cu(i)) and high coordination numbers. Here we discuss the first observations of Cu, Zn, and S isotopic variations, three elements closely related along multiple biological pathways, with emphasis on serum samples of healthy volunteers and of cancer patients. It was found that heavy isotopes of Zn and to an even greater extent Cu are enriched in erythrocytes relative to serum, while the difference is small for sulfur. Isotopic variations related to age and sex are relatively small. The 65Cu/63Cu ratio in the serum of patients with colon, breast, and liver cancer is conspicuously low relative to healthy subjects. The characteristic time over which Cu isotopes may change with disease progression (a few weeks) is consistent with both the turnover time of the element and albumin half-life. A parallel effect on sulfur isotopes is detected in a few un-medicated patients. Copper in liver tumor tissue is isotopically heavy. In contrast, Zn in breast cancer tumors is isotopically lighter than in healthy breast tissue. 66Zn/64Zn is very similar in the serum of cancer patients and in controls. Possible reasons for Cu isotope variations may be related to the cytosolic storage of Cu lactate (Warburg effect), release of intracellular copper from cysteine clusters (metallothionein), or the hepatocellular and biosynthetic dysfunction of the liver. We suggest that Cu isotope metallomics will help evaluate the homeostasis of this element during patient treatment, notably by chelates and blockers of Cu trafficking, and understand the many biochemical pathways in which this element is essential.
Collapse
Affiliation(s)
- Francis Albarede
- Ecole Normale Supérieure de Lyon and CNRS UMR 5276, 69007 Lyon, France.
| | - Philippe Télouk
- Ecole Normale Supérieure de Lyon and CNRS UMR 5276, 69007 Lyon, France.
| | - Vincent Balter
- Ecole Normale Supérieure de Lyon and CNRS UMR 5276, 69007 Lyon, France.
| | | | | | - Philippe Oger
- Ecole Normale Supérieure de Lyon and CNRS UMR 5276, 69007 Lyon, France.
| | - Paola Bonaventura
- Department of Immunology and Rheumatology, Immunogenomics and inflammation EA 4130, University of Lyon, Edouard Herriot Hospital, 69437 Lyon, France
| | - Pierre Miossec
- Department of Immunology and Rheumatology, Immunogenomics and inflammation EA 4130, University of Lyon, Edouard Herriot Hospital, 69437 Lyon, France
| | - Toshiyuki Fujii
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| |
Collapse
|
16
|
Cikomola JC, Flórez MR, Costas-Rodríguez M, Anoshkina Y, Vandepoele K, Katchunga PB, Kishabongo AS, Speeckaert MM, Vanhaecke F, Delanghe JR. Whole blood Fe isotopic signature in a sub-Saharan African population. Metallomics 2017; 9:1142-1149. [DOI: 10.1039/c7mt00170c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Fe isotopic composition of an individual's whole blood has recently been shown to be an interesting clinical indicator of Fe status.
Collapse
Affiliation(s)
- Justin C. Cikomola
- Department of Internal Medicine
- Hôpital provincial général de référence de Bukavu
- Catholic University of Bukavu
- Bukavu
- Democratic Republic of the Congo
| | - María R. Flórez
- Department of Analytical Chemistry
- Ghent University
- B-9000 Ghent
- Belgium
| | | | - Yulia Anoshkina
- Department of Analytical Chemistry
- Ghent University
- B-9000 Ghent
- Belgium
| | - Karl Vandepoele
- Laboratory of Molecular Diagnostics and Hematology
- Ghent University Hospital
- Ghent
- Belgium
| | - Philippe B. Katchunga
- Department of Internal Medicine
- Hôpital provincial général de référence de Bukavu
- Catholic University of Bukavu
- Bukavu
- Democratic Republic of the Congo
| | - Antoine S. Kishabongo
- Department of Laboratory Medicine
- Hôpital provincial général de référence de Bukavu
- Catholic University of Bukavu
- Bukavu
- Democratic Republic of the Congo
| | | | - Frank Vanhaecke
- Department of Analytical Chemistry
- Ghent University
- B-9000 Ghent
- Belgium
| | - Joris R. Delanghe
- Department of Clinical Chemistry
- Ghent University Hospital
- De Pintelaan 185 B-9000 Ghent
- Belgium
| |
Collapse
|
17
|
Iron Isotope Signature in Red Blood Cell Samples from Japanese Female Donors of Various Ages. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Jaouen K, Herrscher E, Balter V. Copper and zinc isotope ratios in human bone and enamel. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 162:491-500. [DOI: 10.1002/ajpa.23132] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Klervia Jaouen
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Deutscher Platz, 6 Leipzig 04103 Germany
| | - Estelle Herrscher
- Aix Marseille University, CNRS, Minist Culture & Com, LAMPEA, MMSH - BP 647; 5 rue du Château de l'Horloge Aix-en-Provence 13094 France
| | - Vincent Balter
- Laboratoire de Géologie de Lyon, UMR 5276 CNRS, ENS Lyon, Lyon I University; 46, allée d'Italie Lyon 69007 France
| |
Collapse
|
19
|
Costas-Rodríguez M, Delanghe J, Vanhaecke F. High-precision isotopic analysis of essential mineral elements in biomedicine: natural isotope ratio variations as potential diagnostic and/or prognostic markers. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.10.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Heavy element stable isotope ratios : analytical approaches and applications. Anal Bioanal Chem 2013; 405:2771-83. [DOI: 10.1007/s00216-013-6728-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/18/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
|
21
|
Jaouen K, Gibert M, Lamboux A, Telouk P, Fourel F, Albarède F, Alekseev AN, Crubézy E, Balter V. Is aging recorded in blood Cu and Zn isotope compositions? Metallomics 2013; 5:1016-24. [DOI: 10.1039/c3mt00085k] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Isotopic analyses by ICP-MS in clinical samples. Anal Bioanal Chem 2012; 405:2785-97. [DOI: 10.1007/s00216-012-6457-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 11/26/2022]
|
23
|
Jaouen K, Balter V, Herrscher E, Lamboux A, Telouk P, Albarède F. Fe and Cu stable isotopes in archeological human bones and their relationship to sex. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 148:334-40. [DOI: 10.1002/ajpa.22053] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/14/2012] [Indexed: 11/10/2022]
|
24
|
Gulson B, McCall M, Korsch M, Gomez L, Casey P, Oytam Y, Taylor A, McCulloch M, Trotter J, Kinsley L, Greenoak G. Small Amounts of Zinc from Zinc Oxide Particles in Sunscreens Applied Outdoors Are Absorbed through Human Skin. Toxicol Sci 2010; 118:140-9. [DOI: 10.1093/toxsci/kfq243] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
The potential of mass spectrometry to study iron-containing proteins used in clinical diagnosis. Anal Chim Acta 2009; 634:1-14. [DOI: 10.1016/j.aca.2008.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/25/2008] [Accepted: 12/06/2008] [Indexed: 11/24/2022]
|
26
|
Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: a review. Anal Bioanal Chem 2007; 390:451-63. [DOI: 10.1007/s00216-007-1635-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/10/2007] [Accepted: 09/17/2007] [Indexed: 01/17/2023]
|
27
|
Dauphas N, Rouxel O. Mass spectrometry and natural variations of iron isotopes. MASS SPECTROMETRY REVIEWS 2006; 25:515-50. [PMID: 16463281 DOI: 10.1002/mas.20078] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although the processes that govern iron isotope variations in nature are just beginning to be understood, multiple studies attest of the virtue of this system to solve important problems in geosciences and biology. In this article, we review recent advances in the geochemistry, cosmochemistry, and biochemistry of iron isotopes. In Section 2, we briefly address the question of the nucleosynthesis of Fe isotopes. In Section 3, we describe the different methods for purifying Fe and analyzing its isotopic composition. The methods of SIMS, RIMS, and TIMS are presented but more weight is given to measurements by MC-ICPMS. In Section 4, the isotope anomalies measured in extraterrestrial material are briefly discussed. In Section 5, we show how high temperature processes like evaporation, condensation, diffusion, reduction, and phase partitioning can affect Fe isotopic composition. In Section 6, the various low temperature processes causing Fe isotopic fractionation are presented. These involve aqueous and biologic systems.
Collapse
Affiliation(s)
- Nicolas Dauphas
- Origins Laboratory, Department of the Geophysical Sciences, Enrico Fermi Institute, and Chicago Center for Cosmochemistry, The University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637, USA.
| | | |
Collapse
|