1
|
Duzgun Ergun D, Pastaci Ozsobaci N, Yilmaz T, Ozcelik D, Kalkan MT. Zinc affects nuclear factor kappa b and DNA methyltransferase activity in C3H cancer fibroblast cells induced by a 2100 MHz electromagnetic field. Electromagn Biol Med 2022; 41:93-100. [PMID: 34994293 DOI: 10.1080/15368378.2021.2019760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The use of mobile phones is becoming widespread with the development of technology, and as a result, its effects on human health are becoming more and more important every day. Studies have reported that the electromagnetic field (EMF) emitted by mobile phones may have adverse effects on the biological systems. In order to evaluate the effect of zinc (Zn) on C3H cancer fibroblast cells exposed to 2100 MHz EMF, we analyzed cell viability%, nuclear factor kappa b (NF-κB) and DNA methyltransferase (DNMT) activities. Cells were divided to following groups: Control, sham control, 2100 MHz EMF, 50 µM Zn + 2100 MHz EMF, 100 µM Zn + 2100 MHz EMF, and 200 µM Zn + 2100 MHz EMF for 2 h. We measurement cell viability, NF-κB and DNMT activities. There was increased cell viability % in the 2100 MHz EMF group compared to the control group, while the cell viability % was decreased in the 50, 100 and 200 µM Zn + 2100 MHz EMF groups compared to 2100 MHz EMF. NF-κB and DNMT activities were a significant increase in the 2100 MHz EMF group compared to the control group, although were statistically decreased in the 50, 100 and 200 µM Zn + 2100 MHz EMF groups compared to the 2100 MHz EMF group. Our results demonstrate that 2100 MHz EMF exposure in cancer fibroblast cells induce NF-κB and DNMT activities, whereas zinc supplementation reduce NF-κB and DNMT activities-induced 2100 MHz EMF.
Collapse
Affiliation(s)
- D Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - N Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - T Yilmaz
- Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| | - D Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - M T Kalkan
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
2
|
Wetherell D, Baldwin GS, Shulkes A, Bolton D, Ischia J, Patel O. Zinc ion dyshomeostasis increases resistance of prostate cancer cells to oxidative stress via upregulation of HIF1α. Oncotarget 2018; 9:8463-8477. [PMID: 29492208 PMCID: PMC5823553 DOI: 10.18632/oncotarget.23893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022] Open
Abstract
Zinc ions (Zn2+) are known to influence cell survival and proliferation. However the homeostatic regulation of Zn2+ and their role in prostate cancer (PC) progression is poorly understood. Therefore the subcellular distribution and uptake of Zn2+ in PC cells were investigated. Inductively coupled plasma mass spectroscopy and fluorescent microscopy with the Zn2+-specific fluorescent probe FluoZin-3 were used to quantify total and free Zn2+, respectively, in the normal prostate epithelial cell line (PNT1A) and three human PC cell lines (PC3, DU145 and LNCaP). The effects of Zn2+ treatment on proliferation and survival were measured in vitro using MTT assays and in vivo using mouse xenografts. The ability of Zn2+ to protect against oxidative stress via a HIF1α-dependent mechanism was investigated using a HIF1α knock-down PC3 model. Our results demonstrate that the total Zn2+ concentration in normal PNT1A and PC cells is similar, but PC3 cells contain significantly higher free Zn2+ than PNT1A cells (p < 0.01). PNT1A cells can survive better in the presence of high concentrations of Zn2+ than PC3 cells. Exposure to 10 µM Zn2+ over 72 hours significantly reduces PC3 cell proliferation in vitro but not in vivo. Zn2+ increases PC3 cell survival up to 2.3-fold under oxidative stress, and this protective effect is not seen in PNT1A cells or in a HIF1α-KD PC3 cell model. A state of Zn2+ dyshomeostasis exists in PC. HIF1α is an integral component of a Zn2+-dependent protective mechanism present in PC3 cells. This pathway may be clinically significant through its contribution to castrate-resistant PC survival.
Collapse
Affiliation(s)
- David Wetherell
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Arthur Shulkes
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Damien Bolton
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Joseph Ischia
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Oneel Patel
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia
| |
Collapse
|
3
|
Formigari A, Gregianin E, Irato P. The effect of zinc and the role of p53 in copper-induced cellular stress responses. J Appl Toxicol 2013; 33:527-36. [PMID: 23401182 DOI: 10.1002/jat.2854] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/20/2012] [Accepted: 12/12/2012] [Indexed: 12/17/2022]
Abstract
Metals can directly or indirectly cause an increase in reactive oxygen species (ROS) accumulation in cells, and this may result in programmed cell death. A number of previous studies have shown that zinc (Zn) modulates mitogenic activity via several signalling pathways, such as AKT, mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF -κB), AP-1 and p53. The exact role that Zn plays in the regulation of apoptosis remains ambiguous. Intracellular free Zn modulates p53 activity and stability, and excess Zn alters the p53 protein structure and down-regulates p53's binding to DNA. Copper (Cu) accumulation causes apoptosis that seems to be mediated by DNA damage and subsequent p53 activation. Cu can also displace Zn from its normal binding site on p53, resulting in abnormal protein folding and disruption of p53 function. In spite of the induction of the tumour suppressor p53, hepatic Cu accumulation significantly increases the risk of cancerous neoplasm both in humans and rats, suggesting that p53 function may be impaired in these cells. It is generally understood that imbalances in Cu and Zn levels may lead to a higher prevalence of p53 mutations. An increased number of p53 mutations have been found in liver samples from Wilson's disease (WD) patients. High levels of the p53 mutation most probably contribute to the pathogenesis of cancer in individuals with WD, but the cause and effect are not clear. The protein p53 also plays a crucial role in the transcriptional regulation of metallothionein, which indicates a novel regulatory role for p53. This review discusses the central role of p53 and the redox-inert metal Zn in the cellular stress responses induced by the redox active biometal Cu.
Collapse
Affiliation(s)
- Alessia Formigari
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | | | | |
Collapse
|
4
|
McRae R, Lai B, Fahrni CJ. Subcellular redistribution and mitotic inheritance of transition metals in proliferating mouse fibroblast cells. Metallomics 2013; 5:52-61. [PMID: 23212029 PMCID: PMC3769613 DOI: 10.1039/c2mt20176c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synchrotron X-ray fluorescence microscopy of non-synchronized NIH 3T3 fibroblasts revealed an intriguing redistribution dynamics that defines the inheritance of trace metals during mitosis. At metaphase, the highest density areas of Zn and Cu are localized in two distinct regions adjacent to the metaphase plate. As the sister chromatids are pulled towards the spindle poles during anaphase, Zn and Cu gradually move to the center and partition into the daughter cells to yield a pair of twin pools during cytokinesis. Colocalization analyses demonstrated high spatial correlations between Zn, Cu, and S throughout all mitotic stages, while Fe showed consistently different topographies characterized by high-density spots distributed across the entire cell. Whereas the total amount of Cu remained similar compared to interphase cells, mitotic Zn levels increased almost 3-fold, suggesting a prominent physiological role that lies beyond the requirement of Zn as a cofactor in metalloproteins or messenger in signaling pathways.
Collapse
Affiliation(s)
- Reagan McRae
- School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, U.S.A
| | - Barry Lai
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, U.S.A
| |
Collapse
|
5
|
Study on selected trace elements and heavy metals in some popular medicinal plants from Sudan. J Nat Med 2012; 66:671-9. [DOI: 10.1007/s11418-012-0630-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/17/2012] [Indexed: 12/20/2022]
|
6
|
Ebrahim AM, Eltayeb M, Benker B, Grill P, Attahir M, Osman A, Elsadig M, Michalke B. Study on some trace element contents in serum and nail samples obtained from Sudanese subjects. Biol Trace Elem Res 2011; 144:225-33. [PMID: 21603864 DOI: 10.1007/s12011-011-9076-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
Abstract
This study was performed to investigate trace elements and arsenic contents among Sudanese inhabitants living in the north, east, and west of Sudan. Inductively coupled plasma atomic emission spectrometry was used to determine the contents of Zn and Cu. Graphite furnace atomic absorption spectrometry was used to determine Se in serum samples. It was found that Se and Cu are in the normal range. Zinc showed discrepancies among all studied groups. Acute Zn deficiency was detected in the northern and eastern regions of Sudan. Inductively coupled plasma mass spectroscopy was operated in the dynamic reaction cell mode to determine the arsenic content in the nail samples of the northern inhabitants of Sudan. High values of arsenic were found in the northern people compared with the control group. This elevation could be linked to the misuse of insecticides and herbicides which might be associated with the high rate of cancer incidence in this region.
Collapse
|
8
|
Li Y, Maret W. Transient fluctuations of intracellular zinc ions in cell proliferation. Exp Cell Res 2009; 315:2463-70. [DOI: 10.1016/j.yexcr.2009.05.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/05/2009] [Accepted: 05/19/2009] [Indexed: 01/28/2023]
|