1
|
Zivkovic M, Pols - van Veen E, van der Vegte V, Sebastian SA, de Moor AS, Korporaal SJ, Schutgens RE, Urbanus RT. Functional characterization of a nanobody-based glycoprotein VI-specific platelet agonist. Res Pract Thromb Haemost 2024; 8:102582. [PMID: 39512585 PMCID: PMC11541698 DOI: 10.1016/j.rpth.2024.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 11/15/2024] Open
Abstract
Background Glycoprotein (GP)VI is a platelet-specific collagen receptor required for platelet activation during hemostasis. Platelet reactivity toward collagen is routinely assessed during diagnostic workup of platelet disorders. GPVI can be activated by inducing receptor clustering with suspensions of fibrillar collagen or synthetic cross-linked collagen-related peptide (CRP-XL). However, these suspensions are poorly standardized or difficult to produce. Nanobodies are small recombinant camelid-derived heavy-chain antibody variable regions. They are highly stable, specific, and ideal candidates for developing a stable GPVI agonist for diagnostic assays. Objectives Develop a stable nanobody-based GPVI agonist. Methods Nanobody D2 (NbD2) was produced as dimers and purified. Tetramers were generated via C-terminal fusion of dimers with click chemistry. Nanobody constructs were functionally characterized with light transmission aggregometry (LTA) in platelet-rich plasma and whole blood flow cytometry. Diagnostic performance was assessed in patients with inherited platelet function disorders with LTA and flow cytometry. Results NbD2 was specific for human platelet GPVI. Dimers did not result in platelet activation in LTA or flow cytometry settings and fully inhibited CRP-XL-induced P-selectin expression and fibrinogen binding in whole blood and attenuated collagen-induced platelet aggregation in platelet-rich plasma. However, NbD2 tetramers caused full platelet aggregation, as well as P-selectin expression and fibrinogen binding. NbD2 tetramers were able to discriminate between inherited platelet function disorder patients and healthy controls based on fibrinogen binding, similar to CRP-XL. Conclusion Nanobody tetramers to GPVI induce platelet activation and can be used to assess the GPVI pathway in diagnostic assays.
Collapse
Affiliation(s)
- Minka Zivkovic
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Circulatory Health Research Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elisabeth Pols - van Veen
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Circulatory Health Research Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Vossa van der Vegte
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Circulatory Health Research Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Silvie A.E. Sebastian
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annick S. de Moor
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Suzanne J.A. Korporaal
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roger E.G. Schutgens
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rolf T. Urbanus
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Circulatory Health Research Center, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Slater A, Khattak S, Thomas MR. GPVI inhibition: Advancing antithrombotic therapy in cardiovascular disease. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:465-473. [PMID: 38453424 PMCID: PMC11323372 DOI: 10.1093/ehjcvp/pvae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Glycoprotein (GP) VI (GPVI) plays a major role in thrombosis but not haemostasis, making it a promising antithrombotic target. The primary role of GPVI on the surface of platelets is a signalling receptor for collagen, which is one of the most potent thrombotic sub-endothelial components that is exposed by atherosclerotic plaque rupture. Inhibition of GPVI has therefore been investigated as a strategy for treatment and prevention of atherothrombosis, such as during stroke and acute coronary syndromes. A range of specific GPVI inhibitors have been characterized, and two of these inhibitors, glenzocimab and revacept, have completed Phase II clinical trials in ischaemic stroke. In this review, we summarize mechanisms of GPVI activation and the latest progress of clinically tested GPVI inhibitors, including their mechanisms of action. By focusing on what is known about GPVI activation, we also discuss whether alternate strategies could be used to target GPVI.
Collapse
Affiliation(s)
- Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Sophia Khattak
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Cardiology Department, Queen Elizabeth Hospital, University Hospitals Birmingham, B15 2GW, Birmingham, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Cardiology Department, Queen Elizabeth Hospital, University Hospitals Birmingham, B15 2GW, Birmingham, UK
| |
Collapse
|
3
|
Xu RG, Tiede C, Calabrese AN, Cheah LT, Adams TL, Gauer JS, Hindle MS, Webb BA, Yates DM, Slater A, Duval C, Naseem KM, Herr AB, Tomlinson DC, Watson SP, Ariëns RAS. Affimer reagents as tool molecules to modulate platelet GPVI-ligand interactions and specifically bind GPVI dimer. Blood Adv 2024; 8:3917-3928. [PMID: 38838227 PMCID: PMC11321386 DOI: 10.1182/bloodadvances.2024012689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
ABSTRACT Glycoprotein VI (GPVI) plays a key role in collagen-induced platelet aggregation. Affimers are engineered binding protein alternatives to antibodies. We screened and characterized GPVI-binding Affimers as novel tools to probe GPVI function. Among the positive clones, M17, D22, and D18 bound GPVI with the highest affinities (dissociation constant (KD) in the nanomolar range). These Affimers inhibited GPVI-collagen-related peptide (CRP)-XL/collagen interactions, CRP-XL/collagen-induced platelet aggregation, and D22 also inhibited in vitro thrombus formation on a collagen surface under flow. D18 bound GPVI dimer but not monomer. GPVI binding was increased for D18 but not M17/D22 upon platelet activation by CRP-XL and adenosine 5'-diphosphate. D22 but not M17/D18 displaced nanobody 2 (Nb2) binding to GPVI, indicating similar epitopes for D22 with Nb2 but not for M17/D18. Mapping of binding sites revealed that D22 binds a site that overlaps with Nb2 on the D1 domain, whereas M17 targets a site on the D2 domain, overlapping in part with the glenzocimab binding site, a humanized GPVI antibody fragment antigen-binding fragment. D18 targets a new region on the D2 domain. We found that D18 is a stable noncovalent dimer and forms a stable complex with dimeric GPVI with 1:1 stoichiometry. Taken together, our data demonstrate that Affimers modulate GPVI-ligand interactions and bind different sites on GPVI D1/D2 domains. D18 is dimer-specific and could be used as a tool to detect GPVI dimerization or clustering in platelets. A dimeric epitope regulating ligand binding was identified on the GPVI D2 domain, which could be used for the development of novel bivalent antithrombotic agents selectively targeting GPVI dimer on platelets.
Collapse
Affiliation(s)
- Rui-Gang Xu
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Christian Tiede
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Lih T. Cheah
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Thomas L. Adams
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Julia S. Gauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Matthew S. Hindle
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Beth A. Webb
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Daisie M. Yates
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Cédric Duval
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Khalid M. Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Andrew B. Herr
- Division of Immunobiology and Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Darren C. Tomlinson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert A. S. Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Wang X, Slater A, Lee SC, Harrison N, Pollock NL, Bakker SE, Navarro S, Nieswandt B, Dafforn TR, García Á, Watson SP, Tomlinson MG. Purification and characterisation of the platelet-activating GPVI/FcRγ complex in SMALPs. Arch Biochem Biophys 2024; 754:109944. [PMID: 38395124 DOI: 10.1016/j.abb.2024.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The collagen/fibrin(ogen) receptor, glycoprotein VI (GPVI), is a platelet activating receptor and a promising anti-thrombotic drug target. However, while agonist-induced GPVI clustering on platelet membranes has been shown to be essential for its activation, it is unknown if GPVI dimerisation represents a unique conformation for ligand binding. Current GPVI structures all contain only the two immunoglobulin superfamily (IgSF) domains in the GPVI extracellular region, so lacking the mucin-like stalk, transmembrane, cytoplasmic tail of GPVI and its associated Fc receptor γ (FcRγ) homodimer signalling chain, and provide contradictory insights into the mechanisms of GPVI dimerisation. Here, we utilised styrene maleic-acid lipid particles (SMALPs) to extract GPVI in complex with its two associated FcRγ chains from transfected HEK-293T cells, together with the adjacent lipid bilayer, then purified and characterised the GPVI/FcRγ-containing SMALPs, to enable structural insights into the full-length GPVI/FcRγ complex. Using size exclusion chromatography followed by a native polyacrylamide gel electrophoresis (PAGE) method, SMA-PAGE, we revealed multiple sizes of the purified GPVI/FcRγ SMALPs, suggesting the potential existence of GPVI oligomers. Importantly, GPVI/FcRγ SMALPs were functional as they could bind collagen. Mono-dispersed GPVI/FcRγ SMALPs could be observed under negative stain electron microscopy. These results pave the way for the future investigation of GPVI stoichiometry and structure, while also validating SMALPs as a promising tool for the investigation of human membrane protein interactions, stoichiometry and structure.
Collapse
Affiliation(s)
- Xueqing Wang
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15782 Santiago de Compostela, Spain.
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| | - Sarah C Lee
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Neale Harrison
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Naomi L Pollock
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Saskia E Bakker
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Stefano Navarro
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
| | - Tim R Dafforn
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ángel García
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15782 Santiago de Compostela, Spain
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| | - Michael G Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
5
|
Martin EM, Clark JC, Montague SJ, Morán LA, Di Y, Bull LJ, Whittle L, Raka F, Buka RJ, Zafar I, Kardeby C, Slater A, Watson SP. Trivalent nanobody-based ligands mediate powerful activation of GPVI, CLEC-2, and PEAR1 in human platelets whereas FcγRIIA requires a tetravalent ligand. J Thromb Haemost 2024; 22:271-285. [PMID: 37813196 DOI: 10.1016/j.jtha.2023.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Clustering of the receptors glycoprotein receptor VI (GPVI), C-type lectin-like receptor 2 (CLEC-2), low-affinity immunoglobulin γ Fc region receptor II-a (FcγRIIA), and platelet endothelial aggregation receptor 1 (PEAR1) leads to powerful activation of platelets through phosphorylation of tyrosine in their cytosolic tails and initiation of downstream signaling cascades. GPVI, CLEC-2, and FcγRIIA signal through YxxL motifs that activate Syk. PEAR1 signals through a YxxM motif that activates phosphoinositide 3-kinase. Current ligands for these receptors have an undefined valency and show significant batch variation and, for some, uncertain specificity. OBJECTIVES We have raised nanobodies against each of these receptors and multimerized them to identify the minimum number of epitopes to achieve robust activation of human platelets. METHODS Divalent and trivalent nanobodies were generated using a flexible glycine-serine linker. Tetravalent nanobodies utilize a mouse Fc domain (IgG2a, which does not bind to FcγRIIA) to dimerize the divalent nanobody. Ligand affinity measurements were determined by surface plasmon resonance. Platelet aggregation, adenosine triphosphate secretion, and protein phosphorylation were analyzed using standardized methods. RESULTS Multimerization of the nanobodies led to a stepwise increase in affinity with divalent and higher-order nanobody oligomers having sub-nanomolar affinity. The trivalent nanobodies to GPVI, CLEC-2, and PEAR1 stimulated powerful and robust platelet aggregation, secretion, and protein phosphorylation at low nanomolar concentrations. A tetravalent nanobody was required to activate FcγRIIA with the concentration-response relationship showing a greater variability and reduced sensitivity compared with the other nanobody-based ligands, despite a sub-nanomolar binding affinity. CONCLUSION The multivalent nanobodies represent a series of standardized, potent agonists for platelet glycoprotein receptors. They have applications as research tools and in clinical assays.
Collapse
Affiliation(s)
- Eleyna M Martin
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Joanne C Clark
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK
| | - Samantha J Montague
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Luis A Morán
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Ying Di
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Lily J Bull
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Luke Whittle
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Florije Raka
- Institute for Transfusion Medicine-Skopje, Skopje, North Macedonia
| | - Richard J Buka
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Idrees Zafar
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Caroline Kardeby
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Current address: School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|