1
|
Hubert DL, Bentz EJ, Mason RT. Increased offspring size and reduced gestation length in an ectothermic vertebrate under a worst-case climate change scenario. J Therm Biol 2024; 125:103990. [PMID: 39426089 DOI: 10.1016/j.jtherbio.2024.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
As global temperatures continue to rise, understanding the impacts of warming environments has become increasingly important. Temperature is especially relevant for ectothermic organisms which depend upon consistent and predictable annual temperature cycles for reproduction and development. However, additional research is required in this area to elucidate the potential impacts of climate change on future generations. To understand how projected increases in environmental temperatures may impact reproductive outcomes within natural populations of ectothermic vertebrates, we manipulated minimum ambient temperatures during gestation in Red-sided garter snakes (Thamnophis sirtalis parietalis). Wild snakes were collected in the Interlake region of Manitoba, Canada during their spring mating season and allowed to mate in controlled conditions. For the duration of gestation, mated females were placed into one of two ambient thermal conditions: temperatures emulating those found in the species' natural habitat or temperatures with a consistent 5 °C increase to match end-of-century climate change projections. We recorded observations for each litter and all neonates resulting from controlled mating trials. We observed no difference in litter sizes or birth rates between thermal conditions. However, we observed a significant reduction in gestation length and significant increase to neonate body mass and body condition associated with increased ambient temperatures. These results suggest that increased minimum temperatures during gestation may confer reproductive benefits for the northern populations of this species even under the most extreme current modeled warming predictions. We discuss the broader implications of this effect, including possible negative ecological outcomes.
Collapse
Affiliation(s)
- David L Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97333, USA.
| | - Ehren J Bentz
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Robert T Mason
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97333, USA
| |
Collapse
|
2
|
Chu Z, Wang Z, Zheng Y, Xia Y, Guo X. Sex-Linked Loci on the W Chromosome in the Multi-Ocellated Racerunner ( Eremias multiocellata) Confirm Genetic Sex-Determination Stability in Lacertid Lizards. Animals (Basel) 2023; 13:2180. [PMID: 37443978 DOI: 10.3390/ani13132180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The multi-ocellated racerunner, Eremias multiocellata, was considered to have temperature-dependent sex determination (TSD), as its sex ratio can be influenced at different temperatures. However, such an observation contrasts with recent findings that suggest TSD is less common than previously thought. Here, a genotyping-by-sequencing (GBS) approach was employed to identify sex-linked markers in the E. multiocellata, for which the mechanism choice of TSD or GSD is still controversial. We preliminarily identified 119 sex-linked markers based on sex-associated sex-specific sequences, 97% of which indicated female heterogamety. After eliminating the false positives, 38 sex-linked markers were recognized, all of which showed the ZW/ZZ system. Then, eight of the novel markers were verified by PCR amplification from 15 populations of E. multiocellata, which support the GSD in E. multiocellata without geographic variation. To test the conservation of sex chromosome in Eremias, the eight markers were further cross-tested by PCR amplification in 10 individuals of the Mongolian racerunner (Eremias argus), two of which exhibited cross-utility. The novel sex-linked markers could be mapped on the W chromosome of the sand lizard (Lacerta agilis). Our finding that the sex-linked markers are shared in closely related species, along with a conserved synteny of the W chromosome, further supports the homology and conservation of sex chromosomes in the lacertid lizards.
Collapse
Affiliation(s)
- Zhangqing Chu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziwen Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yun Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
3
|
Whittington CM, Van Dyke JU, Liang SQT, Edwards SV, Shine R, Thompson MB, Grueber CE. Understanding the evolution of viviparity using intraspecific variation in reproductive mode and transitional forms of pregnancy. Biol Rev Camb Philos Soc 2022; 97:1179-1192. [PMID: 35098647 PMCID: PMC9064913 DOI: 10.1111/brv.12836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
How innovations such as vision, flight and pregnancy evolve is a central question in evolutionary biology. Examination of transitional (intermediate) forms of these traits can help address this question, but these intermediate phenotypes are very rare in extant species. Here we explore the biology and evolution of transitional forms of pregnancy that are midway between the ancestral state of oviparity (egg-laying) and the derived state, viviparity (live birth). Transitional forms of pregnancy occur in only three vertebrates, all of which are lizard species that also display intraspecific variation in reproductive phenotype. In these lizards (Lerista bougainvillii, Saiphos equalis, and Zootoca vivipara), geographic variation of three reproductive forms occurs within a single species: oviparity, viviparity, and a transitional form of pregnancy. This phenomenon offers the valuable prospect of watching 'evolution in action'. In these species, it is possible to conduct comparative research using different reproductive forms that are not confounded by speciation, and are of relatively recent origin. We identify major proximate and ultimate questions that can be addressed in these species, and the genetic and genomic tools that can help us understand how transitional forms of pregnancy are produced, despite predicted fitness costs. We argue that these taxa represent an excellent prospect for understanding the major evolutionary shift between egg-laying and live birth, which is a fundamental innovation in the history of animals.
Collapse
Affiliation(s)
- Camilla M. Whittington
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| | - James U. Van Dyke
- Department of Pharmacy and Biomedical Sciences, School of Molecular SciencesLa Trobe UniversityBuilding 4WodongaVIC3689Australia
| | - Stephanie Q. T. Liang
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| | - Scott V. Edwards
- Department of Organismic and Evolutionary BiologyHarvard University, and Museum of Comparative ZoologyCambridgeMA02138U.S.A.
| | - Richard Shine
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | - Michael B. Thompson
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| | - Catherine E. Grueber
- School of Life and Environmental SciencesThe University of SydneyHeydon‐Laurence Building A08SydneyNSW2006
| |
Collapse
|
4
|
Lin Z, Yu K, Shen L, Zhang Y, Liu Y, Hou M, Peng Z, Tang X, Chen Q. A staging table of embryonic development for a viviparous (live-bearing) lizard Eremias multiocellata (Squamata: Lacertidae). Reprod Fertil Dev 2021; 33:782-797. [PMID: 34663492 DOI: 10.1071/rd21082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/13/2021] [Indexed: 11/23/2022] Open
Abstract
As the only viviparous reptile in China that has both temperature-dependent sex determination (TSD) and genetic-dependent sex determination (GSD) mechanisms, Eremias multiocellata is considered as an ideal species for studying the sex determination mechanism in viviparous lizards. However, studies on embryonic stage of viviparous lizards and morphological characteristics of each stage are limited. In the present study, the embryonic development process of E. multiocellata is divided into 15 stages (stages 28-42) according to the morphology of embryos. Embryos sizes are measured and continuous dynamic variation of some key features, including limbs, genitals, eyes, pigments, and brain scales are color imaged by a stereoscopic microscope. Furthermore, based on these morphological characteristics, we compare the similarities and differences in the embryonic development of E. multiocellata with other squamate species. Our results not only identified the staging table of E. multiocellata with continuous changes of external morphological characteristics but also developed a staging scheme for an important model species that provides a necessary foundation for study of sex determination in a viviparous lizard.
Collapse
Affiliation(s)
- Zhaocun Lin
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Kaiming Yu
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Leyao Shen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yu Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Mei Hou
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhennan Peng
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| |
Collapse
|
5
|
Little evidence for switches to environmental sex determination and turnover of sex chromosomes in lacertid lizards. Sci Rep 2019; 9:7832. [PMID: 31127134 PMCID: PMC6534595 DOI: 10.1038/s41598-019-44192-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Amniotes possess variability in sex determination, from environmental sex determination (ESD), where no sex chromosomes are present, to genotypic sex determination (GSD) with highly differentiated sex chromosomes. Some evolutionary scenarios postulate high stability of differentiated sex chromosomes and rare transitions from GSD to ESD. However, sex chromosome turnovers and two independent transitions from highly differentiated ZZ/ZW sex chromosomes to ESD were previously reported in the lacertid lizards. Here, we examined the homology of sex chromosomes in the wide phylogenetic spectrum of lacertids and their outgroups by comparing gene copy numbers between sexes in genes previously found to be Z-specific in some lacertids. Our current sampling covers 45 species from 26 genera including lineages supposed to possess a derived sex determining systems. We found that all tested lacertids share homologous differentiated ZZ/ZW sex chromosomes, which were present already in their common ancestor living around 85 million years ago. These differentiated sex chromosomes are not present in amphisbaenians and teiid lizards, the close relatives of lacertids. Our study demonstrates how inaccuracies in data can influence the outcome of phylogenetic reconstructions of evolution of sex determination, in this case they overestimated the number of shifts from GSD to ESD and the rate in turnovers of sex chromosomes.
Collapse
|
6
|
Hill PL, Burridge CP, Ezaz T, Wapstra E. Conservation of Sex-Linked Markers among Conspecific Populations of a Viviparous Skink, Niveoscincus ocellatus, Exhibiting Genetic and Temperature-Dependent Sex Determination. Genome Biol Evol 2018; 10:1079-1087. [PMID: 29659810 PMCID: PMC5905450 DOI: 10.1093/gbe/evy042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 12/18/2022] Open
Abstract
Sex determination systems are exceptionally diverse and have undergone multiple and independent evolutionary transitions among species, particularly reptiles. However, the mechanisms underlying these transitions have not been established. Here, we tested for differences in sex-linked markers in the only known reptile that is polymorphic for sex determination system, the spotted snow skink, Niveoscincus ocellatus, to quantify the genomic differences that have accompanied this transition. In a highland population, sex is determined genetically, whereas in a lowland population, offspring sex ratio is influenced by temperature. We found a similar number of sex-linked loci in each population, including shared loci, with genotypes consistent with male heterogamety (XY). However, population-specific linkage disequilibrium suggests greater differentiation of sex chromosomes in the highland population. Our results suggest that transitions between sex determination systems can be facilitated by subtle genetic differences.
Collapse
Affiliation(s)
- Peta L Hill
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | | | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Erik Wapstra
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| |
Collapse
|
7
|
Lu HL, Wang J, Xu DD, Dang W. Maternal warming influences reproductive frequency, but not hatchling phenotypes in a multiple-clutched oviparous lizard. J Therm Biol 2018; 74:303-310. [PMID: 29801642 DOI: 10.1016/j.jtherbio.2018.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/29/2018] [Accepted: 04/29/2018] [Indexed: 11/16/2022]
Abstract
The understanding of life-history responses to increased temperature is helpful for evaluating the potential of species for tackling future climate change. Herein, adult southern grass lizards, Takydromus sexlineatus, were maintained under two thermal regimes simulating current thermal environment and a 4 °C warming scenario to determine the effects of experimental warming on female reproduction and offspring phenotypes. Experimental warming caused females to oviposit earlier and more frequently; however, it did not affect other reproductive traits, including clutch size, egg mass and clutch mass. Accelerated embryonic development and energy accumulation rate might have occurred in warmed females. Maternal warming appeared to increase early embryonic mortality, but did not shift hatchling size and locomotor performance. Embryos of oviparous lizards might be more vulnerable to climate change at early stages than at later stages. The impacts of climate change in oviparous lizards might be adverse in the longer term because of the shift in pre-ovipositional embryo viability, which possibly led to a decreased number of hatchlings.
Collapse
Affiliation(s)
- Hong-Liang Lu
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China.
| | - Jie Wang
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Da-De Xu
- College of Life Sciences, Zhaoqing University, Zhaoqing 526061, Guangdong, China
| | - Wei Dang
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| |
Collapse
|
8
|
Ma L, Sun BJ, Cao P, Li XH, Du WG. Phenotypic plasticity may help lizards cope with increasingly variable temperatures. Oecologia 2018; 187:37-45. [DOI: 10.1007/s00442-018-4127-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/09/2018] [Indexed: 01/03/2023]
|
9
|
Wang Y, Li S, Zeng Z, Liang L, Du W. Maternal food availability affects offspring performance and survival in a viviparous lizard. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yang Wang
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing100101 China
- University of Chinese Academy of Science Beijing China
| | - Shu‐Ran Li
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing100101 China
- University of Chinese Academy of Science Beijing China
| | - Zhi‐Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing100101 China
| | - Liang Liang
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing100101 China
- University of Chinese Academy of Science Beijing China
| | - Wei‐Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing100101 China
| |
Collapse
|
10
|
Noble DWA, Stenhouse V, Schwanz LE. Developmental temperatures and phenotypic plasticity in reptiles: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2017; 93:72-97. [DOI: 10.1111/brv.12333] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel W. A. Noble
- School of Biological, Earth and Environmental Sciences, Ecology and Evolution Research Centre; The University of New South Wales, Sydney, 2052; Australia
| | - Vaughn Stenhouse
- School of Biological Sciences; Victoria University; Wellington 6037 New Zealand
| | - Lisa E. Schwanz
- School of Biological, Earth and Environmental Sciences, Ecology and Evolution Research Centre; The University of New South Wales, Sydney, 2052; Australia
| |
Collapse
|
11
|
Holleley CE, Sarre SD, O'Meally D, Georges A. Sex Reversal in Reptiles: Reproductive Oddity or Powerful Driver of Evolutionary Change? Sex Dev 2016; 10:279-287. [DOI: 10.1159/000450972] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2016] [Indexed: 12/16/2022] Open
|
12
|
Wang Y, Zeng ZG, Li SR, Bi JH, Du WG. Low precipitation aggravates the impact of extreme high temperatures on lizard reproduction. Oecologia 2016; 182:961-971. [PMID: 27638182 DOI: 10.1007/s00442-016-3727-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
Extreme high temperatures are occurring more frequently with ongoing anthropogenic climate warming, but the experimental tests of the effects of high temperatures on terrestrial vertebrates in natural conditions are rare. In this study, we investigated the effects of extreme high temperatures on female reproduction and offspring traits of multi-ocellated racerunners (Eremias multiocellata) kept in field enclosures in the desert steppe of Inner Mongolia. Our studies indicate that high temperatures significantly affect the gestation period and reproductive output of females and the offspring sex ratio, but have little impact on offspring body size and mass. More interestingly, we found that the effect of extreme high temperatures on female reproductive output was not consistent between two consecutive years that differed in precipitation. Low precipitation may aggravate the impact of climate warming on lizards and negatively affect the survival of lizards in the desert steppe. Our results provide evidence that temperature interacts with precipitation to determine the life history of lizards, and they suggest that a drier and hotter environment, such as the future climate in arid mid-latitude areas, will likely impose severe pressure on lizard populations, which are an important component of the food web in desert areas around the world.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Shu-Ran Li
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jun-Huai Bi
- College of Life Sciences, Inner Mongolia Normal University, Hohhot, 010022, Inner Mongolia, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
13
|
Wang C, Tang X, Xin Y, Yue F, Yan X, Liu B, An B, Wang X, Chen Q. Identification of Sex Chromosomes by Means of Comparative Genomic Hybridization in a Lizard, Eremias multiocellata. Zoolog Sci 2015; 32:151-6. [DOI: 10.2108/zs130246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Cui Wang
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xiaolong Tang
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Ying Xin
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Feng Yue
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xuefeng Yan
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Bingbing Liu
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Bei An
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xi Wang
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Qiang Chen
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Valenzuela N, Badenhorst D, Montiel EE, Literman R. Molecular Cytogenetic Search for Cryptic Sex Chromosomes in Painted Turtles Chrysemys picta. Cytogenet Genome Res 2014; 144:39-46. [DOI: 10.1159/000366076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
|
15
|
Urban MC, Richardson JL, Freidenfelds NA. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evol Appl 2013; 7:88-103. [PMID: 24454550 PMCID: PMC3894900 DOI: 10.1111/eva.12114] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/05/2013] [Indexed: 12/13/2022] Open
Abstract
Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data.
Collapse
Affiliation(s)
- Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut Storrs, CT, USA
| | - Jonathan L Richardson
- Department of Ecology and Evolutionary Biology, University of Connecticut Storrs, CT, USA
| | - Nicole A Freidenfelds
- Department of Ecology and Evolutionary Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
16
|
Tang XL, Yue F, He JZ, Wang NB, Ma M, Mo JR, Chen Q. Ontogenetic and sexual differences of thermal biology and locomotor performance in a lacertid lizard, Eremias multiocellata. ZOOLOGY 2013; 116:331-5. [PMID: 24156978 DOI: 10.1016/j.zool.2013.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 07/15/2013] [Accepted: 08/03/2013] [Indexed: 11/29/2022]
Abstract
A viviparous lizard, Eremias multiocellata, was used to investigate the possible sexual and ontogenetic effects on selected body temperature, thermal tolerance range and the thermal dependence of locomotor performance. We show that adults are sexually dimorphic and males have larger bodies and heads than females. Adults selected higher body temperatures (34.5 vs. 32.4°C) and could tolerate a broader range of body temperatures (8.1-46.8 vs. 9.1-43.1°C) than juveniles. The sprint speed and maximum sprint distance increased with temperature from 21°C to 33°C, but decreased at 36°C and 39°C in both juveniles and adults. Adults ran faster and longer than juveniles at each tested temperature. Adult locomotor performance was not correlated with snout-vent length (SVL) or sex, and sprint speed was positively correlated with hindlimb length. Juvenile locomotor performance was positively correlated with both SVL and hindlimb length. The ontogenetic variation in selected body temperature, thermal tolerance and locomotor performance in E. multiocellata suggests that the effects of morphology on temperature selection and locomotor performance vary at different ontogenetic stages.
Collapse
Affiliation(s)
- Xiao-long Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Xiaolong TANG, Feng YUE, Ming MA, Ningbo WANG, Jianzheng HE, Qiang CHEN. Effects of Thermal and Hydric Conditions on Egg Incubation and Hatchling Phenotypes in Two Phrynocephalus Lizards. ASIAN HERPETOL RES 2012. [DOI: 10.3724/sp.j.1245.2012.00184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Tang XL, Yue F, Yan XF, Zhang DJ, Xin Y, Wang C, Chen Q. Effects of gestation temperature on offspring sex and maternal reproduction in a viviparous lizard (Eremias multiocellata) living at high altitude. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2012.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Yue F, Tang XL, Zhang DJ, Yan XF, Xin Y, Chen Q. Body temperature and standard metabolic rate of the female viviparous lizard Eremias multiocellata during reproduction. CAN J ZOOL 2012. [DOI: 10.1139/z11-116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The body temperature (Tb) and standard metabolic rate (SMR) of female Eremias multiocellata Günther, 1872, a viviparous lizard, were measured at 25, 30, and 35 °C during pregnancy and after parturition to assess energy requirement of reproduction. The results showed that the Tbs of female lizards were slightly higher than actual ambient temperature in the 25 and 30 °C groups, while they were slightly lower than ambient temperature in the 35 °C group. Ambient temperature significantly affected SMR and gestation period of females. Energy requirement was constant in nonpregnant females, whereas it was increased in pregnant females. The maximal estimates of maintenance costs of pregnancy (MCP) were 4.219, 4.220, and 4.448 mg CO2·min–1, which accounted for 19.40%, 14.15%, and 12.32% of the total metabolic rate in the 25, 30, and 35 °C group, respectively. The results indicated the MCP was an important component of total energy cost for the lizard E. multiocellata and the MCP in this lizard incurs a relative fixed energetic cost irrespective of ambient temperature.
Collapse
Affiliation(s)
- Feng Yue
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, Gansu, China
| | - Xiao-Long Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, Gansu, China
| | - De-Jiu Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, Gansu, China
| | - Xue-Feng Yan
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, Gansu, China
| | - Ying Xin
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, Gansu, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, Gansu, China
| |
Collapse
|
20
|
Tang XL, Yue F, Zhang DJ, Yan XF, Xin Y, Wang C, Chen Q. The effect of operational sex ratio on sex allocation and neonate phenotype in a viviparous lizard Eremias multiocellata. AMPHIBIA-REPTILIA 2012. [DOI: 10.1163/15685381-00002851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal investment in the production of male versus female neonates was approximately equal in most animal species. However, sex allocation theory predicts that under certain conditions, selection may favor the females’ ability to adjust the sex ratio of their offspring, which females tend to use more for an investment of the rare sex. The mechanism of operational sex ratio (OSR) influence on sex allocation is still unclear, and recent studies conducted on lizards have reached conflicting conclusions. Here, we selected a viviparous lizard Eremias multiocellata to test whether pregnant females could adjust the sex ratio of their offspring in response to OSRs. Our results showed that mothers did not adjust the sex ratios or phenotypes of neonates in the laboratory and field-based experiments, except tail length. However, the OSRs subsequently affected growth in both mass and SVL of the offspring in laboratory experiments; whereas only the mass was affected in the semi-nature field experiments. Our results, thus, contradict the predictions of sex allocation theory and challenge the idea that female investment in the scarcity sex might serve as a mechanism which is used for adjusting the population sex ratio.
Collapse
Affiliation(s)
- Xiao-Long Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, Gansu, P. R. China
| | - Feng Yue
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, Gansu, P. R. China
| | - De-Jiu Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, Gansu, P. R. China
| | - Xue-Feng Yan
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, Gansu, P. R. China
| | - Ying Xin
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, Gansu, P. R. China
| | - Cui Wang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, Gansu, P. R. China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, Gansu, P. R. China
| |
Collapse
|
21
|
Xin Y, Tang X, Yue F, Zhang D, Yan X, Wang C, Chen Q. Isolation and sequence analysis of Sox genes from lizard Eremias multiocellata. RUSS J GENET+ 2012. [DOI: 10.1134/s102279541201019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Yan XF, Tang XL, Yue F, Zhang DJ, Xin Y, Wang C, Chen Q. Influence of ambient temperature on maternal thermoregulation and neonate phenotypes in a viviparous lizard, Eremias multiocellata, during the gestation period. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|