1
|
Nunan BL, Silva AS, Wang T, da Silva GS. Respiratory control of acid-base status in lungfish. Comp Biochem Physiol A Mol Integr Physiol 2019; 237:110533. [DOI: 10.1016/j.cbpa.2019.110533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/02/2019] [Accepted: 07/31/2019] [Indexed: 01/19/2023]
|
2
|
Minto WJ, Giusti H, Glass ML, Klein W, da Silva GSF. Buccal jet streaming and dead space determination in the South American lungfish, Lepidosiren paradoxa. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:159-165. [PMID: 31195123 DOI: 10.1016/j.cbpa.2019.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
The "jet stream" model predicts an expired flow within the dorsal part of the buccal cavity with small air mixing during buccal pump ventilation, and has been suggested for some anuran amphibians but no other species of air breathing animal using a buccal force pump has been investigated. The presence of a two-stroke buccal pump in lungfish, i.e. expiration followed by inspiration, was described previously, but no quantitative data are available for the dead-space of their respiratory system and neither a detailed description of airflow throughout a breathing cycle. The present study aimed to assess the degree of mixing of fresh air and expired gas during the breathing cycle of Lepidosiren paradoxa and to verify the possible presence of a jet stream during expiration in this species. To do so, simultaneous measurements of buccal pressure and ventilatory airflows were carried out. Buccal and lung gases (PCO2 and PO2) were also measured. The effective ventilation was calculated and the dead space estimated using Bohr equations. The results confirmed that the two-stroke buccal pump is present in lungfish, as it is in anuran amphibians. The present approaches were coherent with a small dead space, with a very small buccal-lung PCO2 difference. In the South American lungfish the dead space (VD) as a percentage of tidal volume (VT) (VD / VT) ranged from 4.1 to 12.5%. Our data support the presence of a jet stream and indicate a small degree of air mixing in the buccal cavity. Comparisons with the literature indicate that these data are similar to previous data reported for the toad Rhinella schneideri.
Collapse
Affiliation(s)
- Walter J Minto
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Humberto Giusti
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Mogens L Glass
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Wilfried Klein
- School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute of Science and Technology on Comparative Physiology, Rio Claro, SP, Brazil
| | - Glauber S F da Silva
- National Institute of Science and Technology on Comparative Physiology, Rio Claro, SP, Brazil; Institute of Biological Science, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Florindo LH, Armelin VA, McKenzie DJ, Rantin FT. Control of air-breathing in fishes: Central and peripheral receptors. Acta Histochem 2018; 120:642-653. [PMID: 30219242 DOI: 10.1016/j.acthis.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review considers the environmental and systemic factors that can stimulate air-breathing responses in fishes with bimodal respiration, and how these may be controlled by peripheral and central chemoreceptors. The systemic factors that stimulate air-breathing in fishes are usually related to conditions that increase the O2 demand of these animals (e.g. physical exercise, digestion and increased temperature), while the environmental factors are usually related to conditions that impair their capacity to meet this demand (e.g. aquatic/aerial hypoxia, aquatic/aerial hypercarbia, reduced aquatic hidrogenionic potential and environmental pollution). It is now well-established that peripheral chemoreceptors, innervated by cranial nerves, drive increased air-breathing in response to environmental hypoxia and/or hypercarbia. These receptors are, in general, sensitive to O2 and/or CO2/H+ levels in the blood and/or the environment. Increased air-breathing in response to elevated O2 demand may also be driven by the peripheral chemoreceptors that monitor O2 levels in the blood. Very little is known about central chemoreception in air-breathing fishes, the data suggest that central chemosensitivity to CO2/H+ is more prominent in sarcopterygians than in actinopterygians. A great deal remains to be understood about control of air-breathing in fishes, in particular to what extent control systems may show commonalities (or not) among species or groups that have evolved air-breathing independently, and how information from the multiple peripheral (and possibly central) chemoreceptors is integrated to control the balance of aerial and aquatic respiration in these animals.
Collapse
Affiliation(s)
- Luiz Henrique Florindo
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil; Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Rodovia Prof. Paulo Donato Castellane, n/n, Jaboticabal, SP, 14884-900, Brazil
| | - Vinicius Araújo Armelin
- Department of Zoology and Botany, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - David John McKenzie
- Centre for Marine Biodiversity Exploitation and Conservation, UMR9190 (IRD, Ifremer, UM, CNRS), Université Montpellier, Place Eugène Bataillon cc 093, 34095 Montpellier Cedex 5, France; Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Francisco Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
4
|
Trevizan-Baú P, Abe AS, Klein W. Effects of environmental hypoxia and hypercarbia on ventilation and gas exchange in Testudines. PeerJ 2018; 6:e5137. [PMID: 30018853 PMCID: PMC6045925 DOI: 10.7717/peerj.5137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/09/2018] [Indexed: 11/24/2022] Open
Abstract
Background Ventilatory parameters have been investigated in several species of Testudines, but few species have had their ventilatory pattern fully characterized by presenting all variables necessary to understand changes in breathing pattern seen under varying environmental conditions. Methods We measured ventilation and gas exchange at 25 °C in the semi-aquatic turtle Trachemys scripta and the terrestrial tortoise Chelonoidis carbonarius under normoxia, hypoxia, and hypercarbia and furthermore compiled respiratory data of testudine species from the literature to analyze the relative changes in each variable. Results During normoxia both species studied showed an episodic breathing pattern with two to three breaths per episode, but the non-ventilatory periods (TNVP) were three to four times longer in T. scripta than in C. carbonarius. Hypoxia and hypercarbia significantly increased ventilation in both species and decreased TNVP and oxygen consumption in T. scripta but not in C. carbonarius. Discussion Contrary to expectations, the breathing pattern in C. carbonarius did show considerable non-ventilatory periods with more than one breath per breathing episode, and the breathing pattern in T. scripta was found to diverge significantly from predictions based on mechanical analyses of the respiratory system. A quantitative analysis of the literature showed that relative changes in the ventilatory patterns of chelonians in response to hypoxia and hyperbarbia were qualitatively similar among species, although there were variations in the magnitude of change.
Collapse
Affiliation(s)
- Pedro Trevizan-Baú
- Departmento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Programa de Pós-graduação em Biologia Comparada, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Augusto S Abe
- Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Wilfried Klein
- Departmento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
da Silva GSF, Ventura DADN, Zena LA, Giusti H, Glass ML, Klein W. Effects of aerial hypoxia and temperature on pulmonary breathing pattern and gas exchange in the South American lungfish, Lepidosiren paradoxa. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:107-115. [PMID: 28263885 DOI: 10.1016/j.cbpa.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
Abstract
The South American lungfish Lepidosiren paradoxa is an obligatory air-breathing fish possessing well-developed bilateral lungs, and undergoing seasonal changes in its habitat, including temperature changes. In the present study we aimed to evaluate gas exchange and pulmonary breathing pattern in L. paradoxa at different temperatures (25 and 30°C) and different inspired O2 levels (21, 12, 10, and 7%). Normoxic breathing pattern consisted of isolated ventilatory cycles composed of an expiration followed by 2.4±0.2 buccal inspirations. Both expiratory and inspiratory tidal volumes reached a maximum of about 35mlkg-1, indicating that L. paradoxa is able to exchange nearly all of its lung air in a single ventilatory cycle. At both temperatures, hypoxia caused a significant increase in pulmonary ventilation (V̇E), mainly due to an increase in respiratory frequency. Durations of the ventilatory cycle and expiratory and inspiratory tidal volumes were not significantly affected by hypoxia. Expiratory time (but not inspiratory) was significantly shorter at 30°C and at all O2 levels. While a small change in oxygen consumption (V̇O2) could be noticed, the carbon dioxide release (V̇CO2, P=0.0003) and air convection requirement (V̇E/V̇O2, P=0.0001) were significantly affected by hypoxia (7% O2) at both temperatures, when compared to normoxia, and pulmonary diffusion capacity increased about four-fold due to hypoxic exposure. These data highlight important features of the respiratory system of L. paradoxa, capable of matching O2 demand and supply under different environmental change, as well as help to understand the evolution of air breathing in lungfish.
Collapse
Affiliation(s)
- Glauber S F da Silva
- College of Agricultural and Veterinarian Sciences, São Paulo State University, Brazil; National Institute of Science and Technology on Comparative Physiology, Rio Claro, Brazil
| | | | - Lucas A Zena
- College of Agricultural and Veterinarian Sciences, São Paulo State University, Brazil; National Institute of Science and Technology on Comparative Physiology, Rio Claro, Brazil
| | - Humberto Giusti
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Mogens L Glass
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Wilfried Klein
- School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Brazil; National Institute of Science and Technology on Comparative Physiology, Rio Claro, Brazil.
| |
Collapse
|
6
|
Ventilation and gas exchange in two turtles: Podocnemis unifilis and Phrynops geoffroanus (Testudines: Pleurodira). Respir Physiol Neurobiol 2016; 224:125-31. [DOI: 10.1016/j.resp.2014.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 11/24/2022]
|
7
|
Magellan K. Amphibious adaptations in a newly recognized amphibious fish: Terrestrial locomotion and the influences of body size and temperature. AUSTRAL ECOL 2016. [DOI: 10.1111/aec.12332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kit Magellan
- Department of Ichthyology and Fisheries Sciences; Rhodes University; Grahamstown South Africa
| |
Collapse
|
8
|
da Silva GS, Glass ML, Branco LG. Temperature and respiratory function in ectothermic vertebrates. J Therm Biol 2013. [DOI: 10.1016/j.jtherbio.2012.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|