1
|
González-Medina E, Playà-Montmany N, Cabello-Vergel J, Parejo M, Abad-Gómez JM, Sánchez-Guzmán JM, Villegas A, Gutiérrez JS, Masero JA. Mediterranean songbirds show pronounced seasonal variation in thermoregulatory traits. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111408. [PMID: 36812978 DOI: 10.1016/j.cbpa.2023.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Addressing the patterns of variation in thermal traits is crucial to better predict the potential effects of climate change on organisms. Here, we assessed seasonal (winter vs summer) adjustments in key thermoregulatory traits in eight Mediterranean-resident songbirds. Overall, songbirds increased whole-animal (by 8%) and mass-adjusted (by 9%) basal metabolic rate and decreased (by 56%) thermal conductance below the thermoneutral zone during winter. The magnitude of these changes was within the lower values found in songbirds from northern temperate areas. Moreover, songbirds increased (by 11%) evaporative water loss within the thermoneutral zone during summer, while its rate of increase above the inflection point of evaporative water loss (i.e., the slope of evaporative water loss versus temperature) decreased by 35% during summer - a value well above that reported for other temperate and tropical songbirds. Finally, body mass increased by 5% during winter, a pattern similar to that found in many northern temperate species. Our findings support the idea that physiological adjustments might enhance the resilience of Mediterranean songbirds to environmental changes, with short-term benefits by saving energy and water under thermally stressful conditions. Nevertheless, not all species showed the same patterns, suggesting different strategies in their thermoregulatory adaptations to seasonal environments.
Collapse
Affiliation(s)
- Erick González-Medina
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain.
| | - Núria Playà-Montmany
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain. https://twitter.com/NuriaPlayaM
| | - Julián Cabello-Vergel
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Manuel Parejo
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - José M Abad-Gómez
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Juan M Sánchez-Guzmán
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Ecology in the Anthropocene, Associated Unit CSIC-UEX, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Auxiliadora Villegas
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Ecology in the Anthropocene, Associated Unit CSIC-UEX, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain. https://twitter.com/AuxVil
| | - Jorge S Gutiérrez
- Conservation Biology Research Group, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Ecology in the Anthropocene, Associated Unit CSIC-UEX, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain. https://twitter.com/JSGutierrez
| | - José A Masero
- Ecology in the Anthropocene, Associated Unit CSIC-UEX, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain. https://twitter.com/jamasero
| |
Collapse
|
2
|
Oswald KN, Lee ATK, Smit B. Seasonal metabolic adjustments in an avian evolutionary relict restricted to mountain habitat. J Therm Biol 2020; 95:102815. [PMID: 33454043 DOI: 10.1016/j.jtherbio.2020.102815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/12/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
For endotherms, maintaining body temperature during cold winters is energetically costly.Greater increase in winter maximum thermogenic capacity (Msum) has typically been correlated with improved cold tolerance. However, seasonal studies have shown equivocal direction change in basal metabolic rate (BMR) in winter, perhaps explained by latitude or phylogeny. We examined seasonal metabolic responses in the Cape rockjumper (Chaetops frenatus; "rockjumper"), a range-restricted mountain bird. We hypothesized that, given their mountain habitat preference, rockjumpers would be physiologically specialized for cooler air temperatures compared to other subtropical passerines. We measured body condition (using the ratio of Mb/tarsus), BMR, and Msum, in wild-living rockjumpers during winter and summer (n = 12 adults in winter -- 4 females, 8 males; n = 12 adults in summer -- 6 females, 6 males). We found birds had lesser BMR and thermal conductance, and greater Msum and body condition, in winter compared to summer. These changes may help rockjumpers conserve energy in winter while still allowing birds to produce more metabolic heat during the coldest air temperatures. When compared with existing data on avian seasonal metabolic adjustments, rockjumper BMR fit general patterns observed in passerines, but their Msum was low compared with other members of the oscine Passeriformes. These patterns may be explained by the narrow temperature range of their habitat not requiring cold-adjustment, or perhaps by their basal placement within passerine phylogeny. Further work on the physiological phenotypic plasticity in habitat specialists across different latitudinal zones and taxa is needed to better understand the relationship between metabolism, habitat, and phylogeny.
Collapse
Affiliation(s)
- Krista N Oswald
- Department of Zoology and Entomology, Rhodes University, Makhanda, 6139, South Africa; Department of Zoology, Nelson Mandela University, Port Elizabeth, 6031, South Africa.
| | - Alan T K Lee
- Fitzpatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, 7701, South Africa; Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Ben Smit
- Department of Zoology and Entomology, Rhodes University, Makhanda, 6139, South Africa; Department of Zoology, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| |
Collapse
|
3
|
Thompson LJ, Downs CT. Altitudinal variation in metabolic parameters of a small Afrotropical bird. Comp Biochem Physiol A Mol Integr Physiol 2017; 212:88-96. [PMID: 28774754 DOI: 10.1016/j.cbpa.2017.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/16/2022]
Abstract
Of the numerous factors affecting avian metabolic rate, altitude is one of the least studied. We used mass-flow respirometry to measure resting metabolic rate (RMR), evaporative water loss (EWL) and respiratory exchange ratio (RER) in two populations of a small (10-12g) Afrotropical bird, the Cape White-eye (Zosterops virens), in summer and in winter. In total, 51 freshly wild-caught adult Cape White-eyes were measured overnight. Altitude was included as a source of variation in the best approximating models for body mass, whole-animal RMR, RER, whole-animal standard EWL and whole-animal basal EWL. RER was significantly lower in winter, suggesting a greater proportion of lipid oxidation at lower ambient temperatures (Ta). Cape White-eyes were 0.8g heavier at the higher altitude site and 0.5g heavier in winter, suggesting they may have increased their metabolic machinery to cope with cooler temperatures. EWL was generally significantly lower in winter than in summer, suggesting that birds may increase EWL with increasing Ta, as the need for evaporative cooling increases. Our results support the argument that the subtle and complex effects of altitude (and ambient temperature) should be taken into account in studies on avian metabolic rate. WHAT IS ALREADY KNOWN Of the numerous studies known to affect avian metabolic rate, altitude is one of the least studied. Although trends are not always clear, generally, at higher altitudes, avian metabolic rate increases. WHAT THE STUDY ADDS There were statistically significant seasonal and altitudinal differences in various physiological parameters of Cape White-eyes. These results highlight the importance of accounting for altitude in studies of avian metabolic rate.
Collapse
Affiliation(s)
- Lindy J Thompson
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| | - Colleen T Downs
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
4
|
Thompson LJ, Brown M, Downs CT. Thermal acclimation in a small Afrotropical Bird. Behav Processes 2016; 128:113-8. [PMID: 27133922 DOI: 10.1016/j.beproc.2016.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 01/22/2023]
Abstract
Wild-caught animals are regularly used in physiological studies, yet the length of time it takes for completion of their acclimation to laboratory conditions remains largely unknown. In particular, Afrotropical species are relatively understudied compared with temperate and Holarctic species. Thus, we measured a number of metabolic variables in a 10g Afrotropical bird, the Cape White-eye (Zosterops virens), at weekly intervals, over an 8-week period, while birds were acclimating to two different constant thermal environments; 25°C and 29°C. Body mass increased significantly in the first three weeks, remaining approximately constant thereafter, with no significant difference between birds housed at 25°C and those housed at 29°C. However, whole animal resting metabolic rates remained constant throughout the eight-week study period, with values for birds housed at 29°C lower than for birds housed at 25°C. Rather than pointing to a minimum time period necessary for thermal acclimation, these results suggest that in some instances, freshly wild-caught small passerines may not need to be acclimated to laboratory conditions or respirometry equipment, prior to measurements of their resting metabolic rate.
Collapse
Affiliation(s)
- Lindy J Thompson
- School of Life Sciences, University of KwaZulu-Natal, P Bag X01, Scottsville, 3201, South Africa.
| | - Mark Brown
- School of Life Sciences, University of KwaZulu-Natal, P Bag X01, Scottsville, 3201, South Africa
| | - Colleen T Downs
- School of Life Sciences, University of KwaZulu-Natal, P Bag X01, Scottsville, 3201, South Africa.
| |
Collapse
|